

FORGE

POUR TOUS VOS PROCÉDÉS DE DÉFORMATION DE MÉTAUX

COLDFORM

POUR LA FRAPPE À FROID ET L'ESTAMPAGE

SIMHEAT

POUR LE TRAITEMENT THERMIQUE DES MÉTAUX

THERCAST

POUR TOUS LES PROCÉDÉS DE FONDERIE

DIGIMU

POUR L'ÉVOLUTION MICROSTRUCTURALE DES ALLIAGES MÉTALLIQUES

REM3D[®]

POUR LES APPLICATIONS EN INJECTION ET MOULAGE DE MOUSSE

Z-SET

POUR LE CALCUL ET L'ANALYSE DE STRUCTURES ET DES MATÉRIAUX NON-LINÉAIRES

66 Aujourd'hui plus que jamais, les acteurs industriels sont confrontés à des défis multiples et complexes : logistique, énergie, accès et gestion des matières premières, écologie, mais aussi attractivité, motivation et formation continue des équipes opérationnelles. Ces enjeux nécessitent une adaptation constante pour garantir efficacité et compétitivité. Les outils et méthodes qui soutiennent votre performance doivent évoluer sans cesse pour s'adapter à des besoins croissants : flexibilité, refonte des processus, montée en compétence des utilisateurs. C'est dans cette dynamique que Transvalor conçoit son offre, et notamment ses formations professionnelles, un levier essentiel pour maintenir l'expertise et anticiper les mutations. Nous sommes convaincus que l'investissement dans la formation est le meilleur moyen de combattre l'obsolescence des compétences. Forte de son ancrage international et de sa présence dans de nombreux secteurs industriels, Transvalor enrichit ses programmes pour répondre à vos besoins actuels et futurs. Nos formations sont conçues pour vous accompagner dans les transformations industrielles en cours, en vous offrant une maîtrise optimale de nos solutions logicielles et de leurs fonctionnalités les plus récentes. Avec l'offre de formation Transvalor, vous serez pleinement équipés pour exploiter le potentiel de nos outils performants, tout en identifiant et saisissant de nouvelles opportunités pour votre activité. Ensemble, relevons les défis de demain! Laëtitia PEGIE. **Directrice Customer Services**

POURQUOI SE FORMER CHEZ TRANSVALOR?

Z 0

É R A

Z

`___

U

Ш

Ш

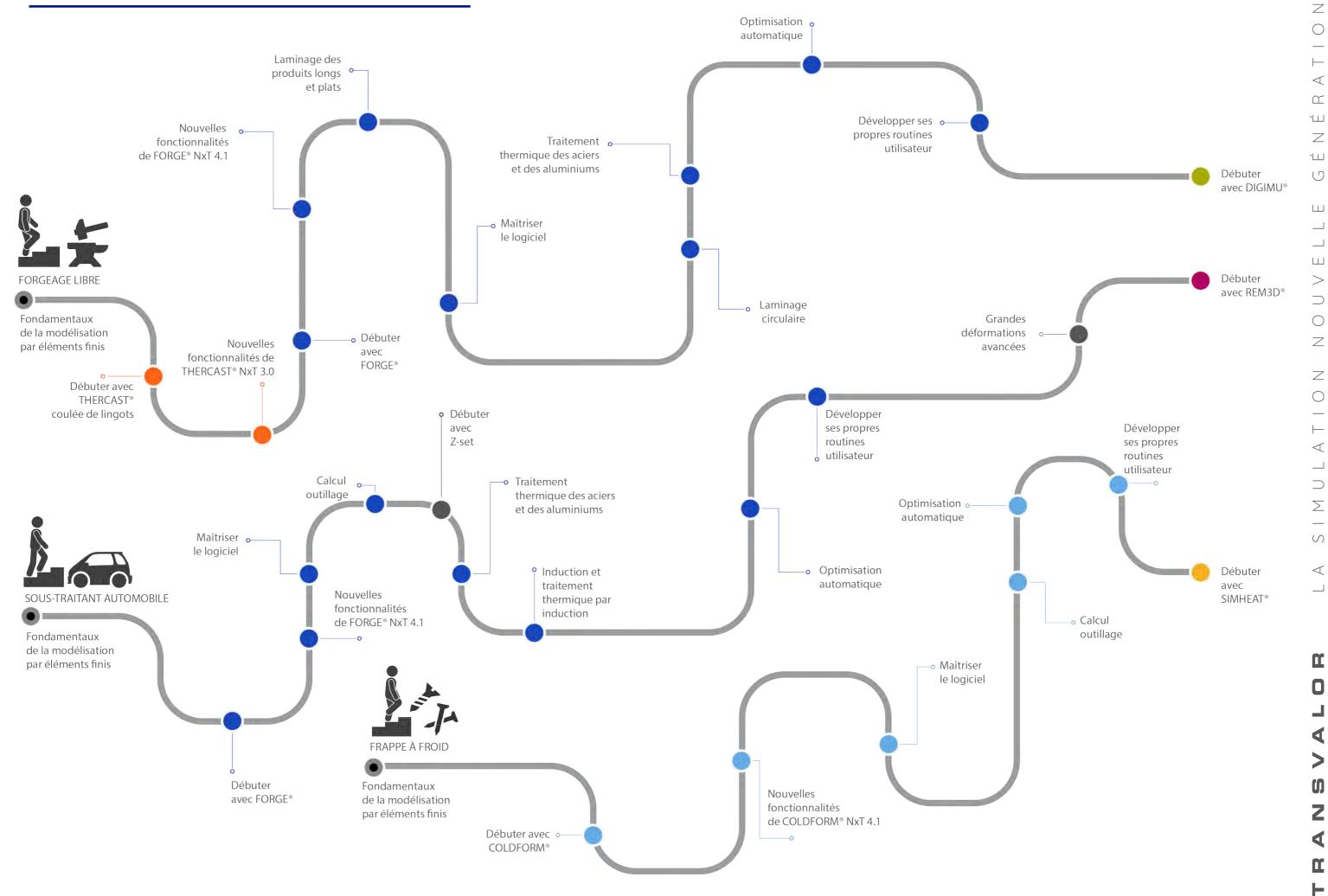
Z

Z 0

 \triangleleft

 $\neg \\ \neg$

 \sum

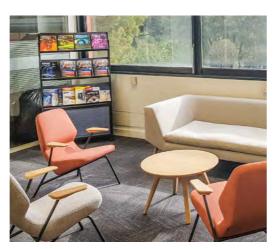

 \bigcirc

FORMATIONS

LOGICIEL	FORMATION	NIVEAU	DURÉE EN JOURS	PAGE
	Fondamentaux de la modélisation par éléments finis	Débutant	1	12
Tous logiciels	Thème sur-mesure	Intermédiaire à Avancé	1	9
	Débuter avec FORGE®	Débutant	2	14
	Débuter avec FORGE® Hot Metal Forming Essential	Débutant	2	16
	Débuter avec FORGE® Hot Metal Forming Premium	Débutant	2	18
	Nouvelles fonctionnalités de FORGE® NxT 4.1	Intermédiaire	1	20
	Maîtriser le logiciel	Intermédiaire	2	22
	Calcul outillage	Intermédiaire	2	24
	Laminage circulaire	Intermédiaire	1.5	26
FORGE®	Laminage produits longs et plats	Intermédiaire	2	28
	Électro-refoulage	Intermédiaire	1.5	30
	Utiliser l'API Python pour automatiser les mises en données et analyse avec FORGE°	Intermédiaire	2	32
	Traitement thermique des aciers et des aluminiums	Avancé	2	34
	Induction et traitement thermique par induction	Avancé	2	36
	Optimisation automatique	Avancé	1.5	38
	Développer ses propres routines utilisateurs	Avancé	2	40
	Débuter avec COLDFORM®	Débutant	2	42
	Nouvelles fonctionnalités de COLDFORM® NxT 4.1	Intermédiaire	1	44
	Maîtriser le logiciel	Intermédiaire	1.5	46
COLDFORM [®]	Calcul outillage	Intermédiaire	1.5	48
	Utiliser l'API Python pour automatiser les mises en données et analyse avec COLDFORM®	Intermédiaire	2	50
	Optimisation automatique	Avancé	1.5	52
	Débuter avec SIMHEAT®	Débutant	3	54
	Traitements thermiques	Débutant	2	56
SIMHEAT®	Utiliser l'API Python pour automatiser les mises en données et analyse avec SIMHEAT®	Intermédiaire	2	58
	Optimisation automatique	Avancé	1.5	60

	Débuter avec THERCAST® Coulée de lingots	Débutant	2	62
	Débuter avec THERCAST® Coulée continue	Débutant	3	64
	Débuter avec THERCAST® Procédés de fonderie	Débutant	3	66
THERCAST®	Nouvelles fonctionnalités de THERCAST® NxT 3.0	Intermédiaire	1	68
	Utiliser l'API Python pour automatiser les mises en données et analyse avec THERCAST®	Intermédiaire	2	72
	Maîtriser le logiciel	Avancé	2	70
	Optimisation automatique	Avancé	1.5	74
DIGIMU®	Débuter avec DIGIMU®	Débutant	1	76
Biglivio	Nouvelles fonctionnalités de DIGIMU® 5.0	Débutant	1	78
DEM2D®	Débuter avec REM3D® - Application moussage	Débutant	2	80
REWISD	Découvrir REM3D° NxT 3.0	Débutant	1	82
	Débuter avec Z-set	Débutant	1	84
7 cot	Débuter avec Z-cracks	Débutant	1	86
Ziset	Connexion de Z-mat aux solveurs EF externes	Débutant	1	88
	Les grandes déformations avancées	Avancé	2	90
REM3D°	Découvrir REM3D® NxT 3.0 Débuter avec Z-set Débuter avec Z-cracks Connexion de Z-mat aux solveurs EF externes	Débutant Débutant Débutant Débutant	1 1 1 1	8 8 8

PARCOURS DE FORMATIONS CONSEILLÉ


NOS DIFFÉRENTES FORMULES DE FORMATION

Formations intra-entreprises : chez vous

- Organisées dans vos locaux à la date qui vous convient
- Pour un ou plusieurs collaborateurs de votre société
- Toutes les formations présentées page 4 et 5 sont concernées
- Prix indiqué par formation selon le niveau entre 1400 €/jour et 2150 €/jour hors taxe
- Les frais de déplacement seront facturés suivant un forfait fixe
- Possibilité d'utiliser vos propres géométries et/ou exemples relatifs à vos fabrications

Ce travail préparatoire est facturé 850 €

• Recommandation : prévoir un poste avec le logiciel opérationnel par personne formée

Formations en ligne

- Organisées en visioconférence interactive
- De une à trois personnes
- Prix indiqué par heure de formation entre 140 € et 225 € hors taxe selon le niveau et le nombre de
- Pour toutes thématiques

Formations académiques

- Pour les académiques uniquement
- Organisées dans nos locaux aux dates proposées ci-dessous
- Pour organiser les formations dans vos locaux et connaître les tarifs, veuillez nous consulter directement

FORMATION	DATES 2025		
Débuter avec FORGE®	28-29 août	27-28 novembre	
Débuter avec THERCAST®	06-07 mars	29-30 octobre	

www.transvalor.com > Our services > Training

Pour toute demande de renseignements sur nos formations pour obtenir un devis, contactez-nous à :

E-mail: sales@transvalor.com - Tél.: +33 (0)4 92 92 42 00

Transvalor est agréé Organisme de Formation, enregistré auprès du Préfet de la Région d'île de France et du Département de Paris sous le numéro 11061363575. Pour la France, Transvalor est certifié Qualiopi, conforme au Décret n° 2019-565 du 6 juin 2019, attestant de la qualité de nos prestations de formation. Notre organisme répond aux critères et exigences établis par le référentiel Qualiopi pour assurer la satisfaction de nos clients formés et la conformité de nos pratiques pédagogiques.

FORMATIONS SUR-MESURE

Les formations sur-mesure répondent à votre demande d'expertise dans un ou plusieurs domaines spécifiques.

Thème totalement adapté à votre problématique industrielle

Pour des participants expérimentés (voir nos suggestions ci-dessous)

Pour obtenir un devis, veuillez nous contacter à l'adresse e-mail suivante: sales@transvalor.com

Suggestions de thèmes :

FORGE®

- Intermédiaire : Anticiper les défauts de forgeage
- Avancé : Forge libre
- Avancé : Métallurgie et microstructure
- Avancé: Fluotournage
- Avancé : Soudage par points

SIMHEAT®

- Débutant : Nouvelles fonctionnalités de SIMHEAT® NxT 4.1

REM3D®

• Intermédiaire : Maîtriser le logiciel

COLDFORM®

- Intermédiaire : Pièces de fixation
- Intermédiaire : Procédés de découpage fin

 \bigcirc

 \triangleleft

 \square

`LLI'

Z

`LLI

 \bigcirc

 \supset

Z

 \bigcirc

 \triangleleft

 \supset

 \sum

- Avancé : Mise en forme de tôles minces
- Avancé : Procédés d'assemblage mécanique

THERCAST®

- Intermédiaire : Couplage THERCAST® FORGE®
- Avancé : Métallurgie et structure de grain
- Avancé : Machine de coulée continue

- · Avancé: Caractérisation d'un fichier matériau
- Expert : Routines utilisateur

LES PLUS

N'hésitez pas à nous adresser à l'avance vos géométries et données procédé de façon à préparer des études de cas personnalisées. Ces sessions de formation peuvent ainsi se dérouler en travaillant sur

vos propres gammes de fabrication pour une efficacité maximale.

Transvalor Transvalor

L'ÉQUIPE À VOTRE SERVICE

NOS FORMATEURS

Basava Raja AKULA

Valentine BOUTEILLE

Rémy BOUTERIGE

Marcelo BUZOLIN

Daniel DELMA

Caitline LASNE

Sergio RODRIGUEZ

Sandra CHERUBINI

José RINCON

Vito SCANNICCHIO

Satya KULKARNI

Weiwei REN

Mohamed ABATOUR

Wajih JBARA

Guangpei JIAO

Les formateurs ont étés très professionnels et accueillant. Leur pédagogie est exemplaire et ils ont bien pris le temps de comprendre nos besoins afin d'orienter la formation.

Valentin SADIN Ingénieur de Recherche, IRT St Exupéry Formation: FORGE® - Débuter avec **FORGE®**

Excellente formation qui combine à la fois la compréhension des modèles de la métallurgie physique implémentés sur DIGIMU et l'utilisation pratique du logiciel.

Othman SKALLI Responsable Simulation, LISI Aerospace Formation: DIGIMU® - Débuter avec

Le contenu de la formation est pertinent et bien structuré. Les sujets abordés sont en adéquation avec mes attentes et m'ont apporté de nouvelles compétences. Le formateur a su expliquer les concepts de manière claire et répondre à toutes les questions. 77

Responsable R&D et service process, ECAI Formation: FORGE® - Laminage circulaire

NOS INTERVENANTS EXPERTS

Jose ALVES Induction, endommagement

Julien BARLIER Matériaux, induction

Expert Z-set

Z

 \bigcirc

 \triangleleft \square

`LLI

Z

`LLI

 \bigcirc

Ш

Ш

 \bigcirc

Z

 \bigcirc

 \geq

4

Fonderie, soudage

Pascal DE MICHELL Évolution microstructurale

Federico FRACASSO Expertise procédés et matériaux

Fonderie, soudage, injection plastique

Patrice LASNE Expertise procédés et matériaux

Stéphane MARIE Expertise procédés

Marc MORENO Matériaux, métallurgie

Nikolay OSIPOV Expert Z-set

Très bien afin de prendre en main le logiciel et d'obtenir rapidement des résultats satisfaisants.

Cédric MARTELLY Chef de projet Méthode, BOUCLEDOR Formation: COLDFORM® - Débuter avec COLDFORM®

Excellente expérience, formateurs très humains. Échange intéressant.

Enguerran BUIDIN Dessinateur / Simulation FEM, Raoul Guyot Formation: FORGE® - Calcul outillage

Formateur qui maitrise son sujet et qui est attentif aux besoins lors des différents échanges.

Cédric CARTIER

Spécialiste procédés et moyen traitement thermique par induction, NTN SNR Formation: FORGE® - Induction et traitement thermique par induction

TOUS LOGICIELS

Fondamentaux de la modélisation par éléments finis

Suivez cette formation pour perfectionner vos connaissances de la méthode des éléments finis et comprendre son application à la résolution de problèmes en grande déformation. Améliorez ainsi la qualité de vos résultats avec une meilleure maîtrise des aspects numériques.

bases essentielles de la modélisation par éléments de maillage et remaillage ainsi que les différences finis et son application en mécanique des milieux entre les formulations (lagrangienne, eulérienne continus. Cette journée vous permettra d'approfondir vos connaissances numériques en vue d'une Au travers d'exemples et durant les ateliers exploitation plus intense des solutions logicielles Transvalor, en particulier FORGE® et COLDFORM®. Vous étudierez les notions fondamentales liées à résultats obtenus.

Au cours de cette formation, vous aborderez les la résolution mécanique et thermique, les principes

d'analyse des simulations, vous comprendrez l'impact des paramètres numériques sur les

NIVEAU

Débutant - Utilisateurs souhaitant approfondir leurs connaissances numériques dans les domaines de la simulation par éléments finis et de la modélisation.

PRÉREQUIS

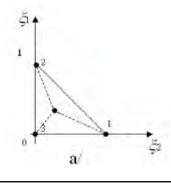
Cette formation ne nécessite pas de prérequis.

OBJECTIFS

- · Connaître les bases des éléments finis pour mieux utiliser nos produits et tirer profit de la simulation
- Comprendre les fondamentaux de la méthode des éléments finis : de l'équation de la thermique à l'équation de la mécanique
- Approfondir les notions de discrétisation spatiale et temporelle
- · Maîtriser les principes de maillage et de remaillage
- Savoir déterminer le comportement des matériaux
- Contrôler l'impact des paramètres numériques sur le résultat final

AUTRES FORMATIONS CONSEILLÉES

- FORGE® Maîtriser le logiciel
- FORGE® Calcul outillage


FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	1 jour	1400 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	 Présentation de Transvalor Objectifs de la formation
Simulation numérique	 Intérêt de la simulation numérique en mise en forme des matériaux Exemples concrets
Introduction à la méthode des éléments finis	 Principe de la méthode des éléments finis Discrétisation temporelle et spatiale Fonction d'interpolation Conditions limites
Discrétisation du domaine et formulations	 Maillage et types d'éléments Critère de qualité surfacique et volumique du maillage Formulation lagrangienne ou eulérienne Remaillage Méthode ALE
Gestion des symétries	 2D axisymétrique ou 2D déformation plane 3D avec symétrie Impact des symétries sur le temps de calcul Analyse des résultats
Gestion du contact	 Définition et types Calcul de la distance de contact Contact pénalisé Contact multi-corps déformables
Résolution du problème mécanique et thermique	 Résolution du comportement non-linéaire Formulation mécanique et thermique Méthode de résolution directe ou itérative Gestion du pas de temps Actualisation de la géométrie Transport des champs Couplage Mécanique-Thermique-Métallurgie Résolution des équations de diffusion
Comportement des matériaux	 Les comportements : visco-plastique, élasto-plastique, plastique et élastique Thermo-dépendance et sensibilité à la vitesse de déformation Critère de plasticité et notion de contrainte d'écoulement Isotropie et anisotropie
Exercices	 Données nécessaires Etapes de modélisation Application du post-traitement en mécanique

· Questions diverses et évaluation de la formation

Conclusion

 \geq

 \triangleleft

 \square `LLI

Z

`Ш

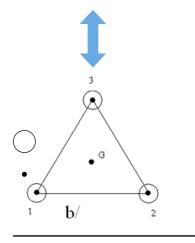
 \bigcirc

Ш

>

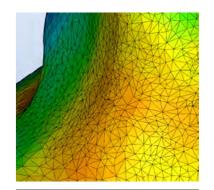
 \supset

 \mathbb{Z}


 \bigcirc

 \supset \sum

 \bigcirc


 \triangleleft

Triangle à 3 nœuds à mini-élément appelé aussi P1+/P1

Degré de libertés en pression

Degré de libertés en vitesse

Maillage tétraédrique des produits

Transvalor

Débuter avec FORGE®

Apprenez à utiliser FORGE® et découvrez l'étendue de ses possibilités. À l'issue de cette formation, vous serez à même d'exploiter tout le potentiel du logiciel!

Cette formation constitue votre première approche panel complet de résultats pour une meilleure du logiciel FORGE®.

La première journée vous permettra d'appréhender toutes les étapes de la mise en données, la procédure de lancement des calculs et l'analyse des principaux résultats. La deuxième journée sera consacrée à l'analyse plus poussée d'un

interprétation des phénomènes physiques. Des fonctionnalités clés seront abordées telles que le calcul outillage, les techniques de fibrage, la détection de replis ainsi que la personnalisation de l'environnement de travail.

NIVEAU

Débutant

PRÉREQUIS

Cette formation ne nécessite pas de prérequis.

OBJECTIFS

- Mettre en données un cas de forgeage (estampage/matriçage)
- Lancer un calcul et/ou une chaîne de calcul
- Analyser les résultats de simulation
- Identifier et interpréter des défauts de mise en forme (replis, criques, etc.)
- Visualiser un fibrage et suivre des grandeurs physiques (température, pression, etc.) en tout point de la pièce
- Prédire l'usure des matrices et effectuer des calculs dans les outillages (contraintes, etc.)
- Personnaliser son environnement de travail

AUTRES FORMATIONS CONSEILLÉES

- Fondamentaux de la modélisation par éléments finis
- Nouvelles fonctionnalités de FORGE® NxT 4.1

FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	2 jours	2800 €/formation	1 à 3 personnes

Cette formation est aussi disponible pour les participants académiques. Plus d'infos page 8.

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	 Présentation de Transvalor Objectifs de la formation Rappels sur la méthode des éléments finis
Mise en données	 Présentation de l'environnement Concepts de stores, procédés, cas et étapes Import des géométries Maillages surfacique et volumique Définition de la cinématique Rhéologie, frottements, échanges thermiques, base de données matériaux (FPD) Manipulations sur les objets (création, ébavurage) Application à un cas tutoriel
Lancement des calculs	 Lancement rapide Gestionnaire de calculs et chaînage de simulations
Analyse des résultats	 Affichage des résultats, principaux scalaires et vecteurs Tracés de courbes, animations, export VTFx Analyse multi-fenêtres Gestion des animations et export des résultats
Mise en données d'un cas industriel	Lancement de calcul

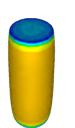
Analyse des résultats du cas industriel	Interprétation des résultats	
Fonctionnalités complémentaires	 Marquage et fibrage Capteurs prédéfinis et post-procédé Refroidissement initial du four à la presse Cisaillage, perçage et ébavurage du lopin Import assemblage 	
Calcul outillage	Approche découplée et couplée	
Personnalisation de l'environnement de travail	Création de modèles et de données spécifiques (matériaux, presses, frottements)	
Perspectives	- Introduction aux notions avancées : induction, traitement thermique	
Conclusion	Questions diverses et évaluation de la formation	

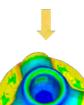
 \triangleleft

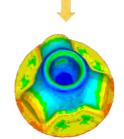
 \square `Ш

Z

`Ш


 \bigcirc


Ш


 \supset

 \geq

1ère phase: refroidissement initial

2ème : écrasement 3ème : ébauche

Débuter avec FORGE® Hot Metal Forming Essential

Découvrez FORGE® Hot Metal Forming Essential, le module qui convient à la plupart des procédés standards de mise en forme à chaud, spécialement destiné au forgeage en matrice fermée.

Le module Hot Metal Forming Essential de FORGE® mettre en données un cas de simulation, lancer permet de valider vos gammes de forgeage, en des calculs et analyser les principaux résultats. particulier l'écoulement du métal, la détection La deuxième journée vous fera découvrir des des défauts majeurs et les efforts de forgeage. fonctionnalités complémentaires pour prédire les

Durant la première journée, vous apprendrez à défauts et optimiser votre gamme de conception.

NIVEAU

Débutant

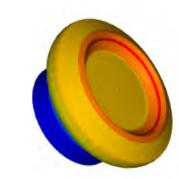
PRÉREQUIS

Cette formation ne nécessite pas de prérequis.

OBJECTIFS

- Mettre en données un cas de forgeage à chaud pour la réalisation de vos pièces
- Analyser les résultats de simulation
- Identifier les défauts de forgeage (replis, criques, etc.) et leurs causes
- Visualiser un fibrage et suivre des grandeurs physiques (température, pression, etc.)
- · Personnaliser son environnement de travail

AUTRES FORMATIONS CONSEILLÉES

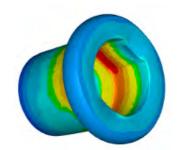


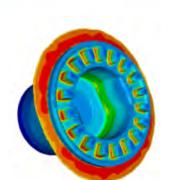
- Fondamentaux de la modélisation par éléments finis
- Nouvelles fonctionnalités de FORGE® NxT 4.1

FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	2 jours	2800 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	 Présentation de Transvalor Objectifs de la formation Rappels sur la méthode des éléments finis
Mise en données	 Présentation de l'environnement Concepts de stores, procédés, cas et étapes Import des géométries Techniques de maillage et remaillage Définition de la cinématique Rhéologie, frottements, échanges thermiques, base de données matériaux (FPD) Notion de transition Application à un cas tutoriel
Lancement des calculs	 Lancement rapide Gestionnaire de calculs et chaînage de simulations
Analyse des résultats	 Affichage des résultats, principaux scalaires (corroyage, contraintes résiduelles, taille de grains) et vecteurs Tracés de courbes, animations, export VTFx Analyse multi-fenêtres Gestion des animations et export des résultats
Mise en données d'un cas industriel	Lancement de calcul




 \square `Ш

Z

`Ш

 \bigcirc

JOUR 2 > 08h30 - 12h00 et 13h30 - 17h00

Analyse des résultats du cas industriel	Interprétation des résultats	
Fonctionnalités complémentaires	 Marquage et fibrage Capteurs prédéfinis et post-procédé Cisaillage, perçage et ébavurage du lopin Import assemblage 	
Calcul outillage	- Approche découplée	
Personnalisation de l'environnement de travail	 Création de modèles et de données spécifiques (matériaux, presses, frottements) Personnalisation des raccourcis clavier 	
Conclusion	Questions diverses et évaluation de la formation	

Evolution de la température au cours des 3 phases de forgeage d'une bague

Débuter avec FORGE® Hot Metal Forming Premium

Le temps est venu de découvrir le module Hot Metal Forming Premium de FORGE® et l'étendue de ses possibilités. Avec ce module, réalisez et analysez vos simulations de mise en forme à chaud ou mi-chaud!

Cette formation est une première approche de deuxième journée sera consacrée à l'analyse plus l'utilisation du module Hot Metal Forming Premium poussée d'un panel complet de résultats pour de FORGE®. La première journée vous permettra une meilleure interprétation des phénomènes d'appréhender toutes les étapes de la mise en physiques. Des fonctionnalités clés telles que le données, de la procédure de lancement des calculs calcul outillage, les techniques de fibrage ou la ainsi que de l'analyse des principaux résultats. La détection de replis seront abordées.

NIVEAU

Débutant

PRÉREQUIS

Cette formation ne nécessite pas de prérequis.

OBJECTIFS

- Mettre en données un cas de forgeage à chaud (estampage/matriçage)
- Analyser les résultats de simulation
- Identifier et interpréter des défauts de mise en forme (replis, criques, etc.)
- Visualiser un fibrage et suivre des grandeurs physiques (température, pression, etc.)
- Prédire l'usure des matrices et effectuer des calculs dans les outillages (contraintes, déformations, etc.)
- Personnaliser son environnement de travail

FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	2 jours	2800 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	 Présentation de Transvalor Objectifs de la formation Rappels sur la méthode des éléments finis 	
Mise en données	 Présentation de l'environnement Concepts de stores, procédés, cas et étapes Import des géométries Techniques de maillage et remaillage Définition de la cinématique Rhéologie, frottements, échanges thermiques, base de données matériaux (FPD) Notion de transition Application à un cas tutoriel 	
Lancement des calculs	 Lancement rapide Gestionnaire de calculs et chaînage de simulations 	
Analyse des résultats	 Affichage des résultats, principaux scalaires et vecteurs Tracés de courbes, animations, export VTFx Analyse multi-fenêtres Gestion des animations et export des résultats 	
Mise en données d'un cas industriel	Lancement de calcul	

 \triangleleft

`LLI

Z

`Ш

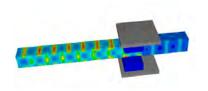
 \bigcirc

Ш

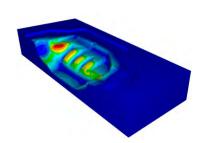
>

 \supset

Z


 \bigcirc

 \triangleleft


 \geq

 \bigcirc

Cartographie de la température

Cartographie de la déformation équivalente

Cartographie de la température sur l'outil inférieur lors d'un calcul outillage avec une approche couplée

JOUR 2 > 08h30 - 12h00 et 13h30 - 17h00

Analyse des résultats du cas industriel	Interprétation des résultats	
Fonctionnalités complémentaires	 Marquage et fibrage Capteurs a priori et a posteriori Refroidissement initial du four à la presse Cisaillage, perçage et ébavurage du lopin Import assemblage 	
Calcul outillage	Approche découplée et couplée	
Personnalisation de l'environnement de travail	 Création de modèles et de données spécifiques (matériaux, presses, frottements) Personnalisation des raccourcis clavier 	
Conclusion	Questions diverses et évaluation de la formation	

Configuration de la cinématique

Nouvelles fonctionnalités de FORGE® NxT 4.1

Vous souhaitez accroître votre productivité? Ayez dès à présent les bons réflexes pour exploiter au mieux toutes les nouvelles fonctionnalités de la version NxT 4.1

À l'issue de cette formation, vous pourrez utiliser les nouvelles fonctionnalités de FORGE® NxT 4.1 et adopterez toutes les bonnes pratiques pour une mise en donnée et une analyse de résultats facilitée. FORGE® NxT 4.0 vous a offert une nouvelle expérience utilisateur via l'intégration du module d'optimisation dans la nouvelle interface. Avec FORGE® NxT 4.1, nous allons plus loin, de nouvelles actions sont disponibles,

et des paramètres liés sont disponibles parmi d'autres nouvelles fonctionnalités. Vous pourrez également tirer profit de la réduction du temps de calcul en 2D. L'intégration du remaillage local en 3D permet d'améliorer la qualité et la précision des solutions. Les nouvelles fonctionnalités de traitement thermique seront également abordées au cours de cette formation.

NIVEAU

Intermédiaire

PRÉREQUIS

Disposer d'une première expérience du logiciel FORGE®.

OBJECTIFS

- Maîtriser toutes les nouvelles fonctionnalités de la version FORGE® NxT 4.1
- Tirer profit des nouveautés de l'interface pour accélérer la mise en données et l'analyse des résultats
- Augmenter la qualité prédictive de vos simulations avec des mises en données plus réalistes
- · Renforcer votre expérience à partir de cas d'études concrets

AUTRES FORMATIONS CONSEILLÉES

- FORGE® Maîtriser le logiciel
- FORGE® Traitement thermique des aciers et des aluminiums

FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	1 jour	1400 €/formation	1 à 3 personnes

JOUR 1 > 08h	30 - 12h00 et 13h30 - 1/h00	non-oxided steel
Introduction	 Présentation de Transvalor Objectifs de la formation	5. 800 - 600 - 5.mm 5.mm 5.mm 7.5.mm 7.5.mm
Nouvelles fonctionnalités	 Améliorations du remailleur Outils d'analyse des résultats CAO 2D Visualisation des tenseurs et des vecteurs Personnalisation des légendes Résultats regroupés par catégories Affichage personnalisable 	Effet de l'épaisseur de calamine sur le temps nécessaire pour homogénéiser la température au centre du lopin
Optimisation automatique	 Concepts: individus, générations, minimisables, contraintes, actions paramétrées Cas d'application Paramètres liés Nouvelles actions disponibles Définition directe des règles 	
Outil de données matériaux	 Interface graphique Relecture et modification des fichiers JMatPro, Point à Point, base de données FPD, fichiers TTT 	Male &
API Python	 Introduction à l'API Python pour mettre en données et analyser automatiquement vos calculs Enregistreur Python Interaction utilisateur Affichage de sortie en temps réel 	
	Loi de l'épaisseur de la calamine en fonction du temps de chauffe dans le four	

(prédiction et rupture, influence sur le frottement et l'usure)

Enrichissement de la base de données des fluides de trempe

- Intégration temporelle avec un schéma de 2nd degré

· Nouvelle approche stationnaire pour les simulations de laminage à froid

· Réduction du temps CPU par rapport à l'approche incrémentale

· Avantage de l'approche phase field (champ de phase)

Questions diverses et évaluation de la formation

· Modèle de revenu de la martensite

- Deux alliages en aluminium

- Plusieurs fichiers TTT pour les bi-matériaux

- Thermomécanique dans les inducteurs - Exportation des forces de Lorentz

- Maillage r-adaptation pour induction

· Ajout d'un modèle d'objet concentrateur

· Prise en charge des rhéologies EVP

· Décharge élastique prise en compte

· Nouveau remaillage adaptatif et itératif

Matériaux

Induction

Auto-rayonnement

Mise en données

Approche 2.5D

Traitement

thermique

Laminage à Froid

Cas de découpe

Fluotournage Conclusion

Stationnaire

	4	dis	A.		
-			1	25	
-			T		
		PA.	-		
		7 2	5		

 \triangleleft

 \square `LLI \mathbb{Z}

`LLI

()

Ш

 \supset

 \bigcirc

 \geq

 \bigcirc

 \triangleleft

Visualisation d'un tenseur et d'un	
marquage cylindrique (en vert)	

visualisation d'un tenseur et d'un
marquage cylindrique (en vert)

Maîtriser le logiciel

Développez votre maîtrise du logiciel en contrôlant les toutes dernières fonctionnalités de FORGE®.

À l'issue de cette formation, vous saurez maîtriser en profondeur la nouvelle interface graphique ainsi que la personnalisation des «stores» de redessinée pour accélérer le processus de mise données. en données et d'analyse des résultats. Vous aurez Au niveau calcul, l'accent sera mis sur les dernières fonctionnalités solveur.

projets, les techniques de capteurs et marquages

également une connaissance accrue des toutes nouveautés telles que le bi-maillage applicable en forge libre, le remaillage anisotrope, les procédés Vous découvrirez l'exploitation du mode multi- de traitements thermiques et bien d'autres encore

NIVEAU

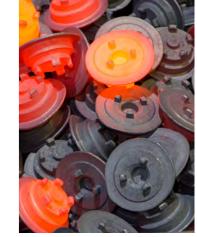
Intermédiaire - Utilisateurs souhaitant maîtriser les fondamentaux du logiciel FORGE® et désireux d'appréhender toutes les fonctionnalités.

PRÉREQUIS

Disposer d'une première expérience du logiciel FORGE®.

OBJECTIFS

- Réaliser sa mise en données suivant le workflow de la nouvelle interface graphique
- · Assurer le lancement de calcul "étape par étape" ou bien "par gamme complète"
- · Comprendre et analyser les résultats
- Personnaliser son environnement de travail


AUTRES FORMATIONS CONSEILLÉES

- FORGE® Optimisation automatique
- FORGE® Traitement thermique des aciers et des aluminiums
- FORGE® Calcul outillage

FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	2 jours	3000 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

	01130 - 121100 Ct 131130 - 171100
Introduction	Présentation de TransvalorObjectifs de la formation
Mise en données	 Procédés, cas, étape et concept du store manager Import de géométries, qualité du maillage, réparation surfacique locale et globale Paramètres de maillage: options avancées, miroir, export de la surface Transformations des objets: dilatation, retournement, ajustement par la gravité Données rhéologiques: fichier tabulé de données de contrainte d'écoulement, import des fichiers JMatPro Définition locale des frottements ou des échanges thermiques Définition avancée de la cinématique de la presse: cinématique lors d'un laminage, outil flottant, rigidité Vérification avec la fenêtre Statut de la mise en données
Lancement du calcul	 Lancement d'une étape ou d'une simulation compléte Nombre optimal de cœurs pour une simulation
Analyse des résultats	 Identification des défauts courants : sous remplissage, replis, fissures Tracés : énergie et efforts Comparaison des projets avec l'outil vue multi-projet
Fonctionnalités avancées	 Capteurs : suivi de points et identification des défauts par analyse inverse Marquage : suivi de la fibre neutre et de la surface cisaillée
Personnalisation de l'environnement	 Personnalisation des données et de la mise en données Création de votre procédé ou étape de mise en données Prise en main du Gestionnaire des stores Enregistrement des macros pour automatiser la mise en données

 \triangleleft

 \square `Ш

Z

`Ш

 \bigcirc

 \bigcirc

 \geq

JOUR 2 > 08h30 - 12h00 et 13h30 - 17h00

Aspects numériques	 Gestion du pas de temps Techniques de remaillage et adaptation du maillage Remaillage anisotrope auto adaptatif Outils analytiques et outils lissés 	Actic Pa
Fonctionnalités avancées	 Forgeage Transition: forgeage dans une matrice à empreintes multiples Réalisation: laminage retour, laminage transverse Contact matière-matière, piégeage de gaz et de lubrifiant Fichier multi-pass (MPFx) Technique de bi-maillage Métallurgie Transformation de phase Recristallisation et taille de grains Routines utilisateur Concept général Sélection des variables prédéfinies 	
Conclusion	Questions diverses et évaluation de la formation	

Calcul outillage

Comment estimer les niveaux de contrainte dans les outillages ? Comment augmenter la durée de vie de vos outils ? Comment évaluer l'évolution de la température de vos outils? Si vous voulez en savoir plus sur le calcul outillage, alors cette formation est faite pour vous!

des coûts de la pièce forgée. Augmenter la durée de déterminer la température des outils après de vie des outils est un défi permettant de produire plusieurs opérations de forgeage. plus de pièces avec les mêmes outils et réduire les Vous saurez modéliser les outillages précontraints coûts de production. À l'issue de cette formation, (assemblage par frettage) et optimiser les vous serez capable d'évaluer l'usure, quantifier conditions de rétrécissement (retrait). Basée la déformation de vos matrices et prédire la sur des exemples industriels, cette formation défaillance prématurée de la matrice.

La conception des outils représente jusqu'à 15% de régime thermique établi et vous serez capable

permettra d'améliorer la conception des matrices En forgeage à chaud, vous maîtriserez l'approche avant de les fabriquer!

NIVEAU

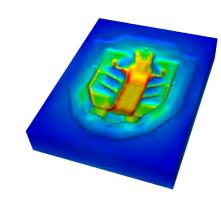
Intermédiaire - Utilisateurs souhaitant renforcer leurs connaissances en calcul outillage.

PRÉREQUIS

Disposer de bonnes bases dans l'utilisation de FORGE®.

OBJECTIFS

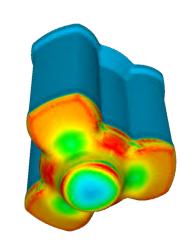
- Simuler les comportements mécaniques et thermiques des outillages (rupture, dégradation par fatigue)
- Analyser et interpréter des résultats de calculs (usure, contraintes, etc.)


AUTRES FORMATIONS CONSEILLÉES

- FORGE® Optimisation automatique
- FORGE® Traitement thermique des aciers et des aluminiums

FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	2 jours	3000 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00


Introduction	 Présentation de Transvalor Objectifs de la formation
Calculs outils rigides	 Pourquoi ce type de calcul ? Recommandations pour maillage surfacique des outils 2D/3D Analyse des résultats de la simulation de forgeage outils rigides 2D/3D (usure abrasive, contrainte normale)
Calculs découplés	 Recommandations pour maillage volumique des outils 2D/3D Mise en données Analyse des résultats complémentaires sur outillage 2D/3D (Von Mises, contraintes principales)
Calculs couplés	 Pourquoi ce type de calcul ? Définition des contacts Maître-Maître et Maître-Esclave Mise en données 2D/3D Analyse des résultats (contraintes, température) Différentes options de calculs couplés

Contrainte équivalente maximale observée dans les rayons de raccordement

JOUR 2 > 08h30 - 12h00 et 13h30 - 17h00

Comparaisons calculs découplés et couplés	 Ecoulement de matière Contrainte normale Usure abrasive Contrainte de Von Mises Déformation outillage Efforts de forgeage Choix du type de calcul
Outillage précontraint	 Définition du concept de précontrainte Interpénétration des outils déformables en 2D Précontrainte virtuelle en 3D (VIF) Mise en données Visualisation et interprétation des résultats
Régime thermique établi	 Concept Mise en données Visualisation et interprétation des résultats
Modèle d'usure d'Archard	 Description du modèle Mise en données Comparaison des résultats avec le modèle "standard" d'usure abrasive
Conclusion	Questions diverses et évaluation de la formation

Usure abrasive sur poinçon durant le forgeage d'un joint homocinétique

24 Transvalor Transvalor 25

 \geq

 \triangleleft

 \square `Ш

Z

`Ш \bigcirc

 \supset

 \bigcirc

Z

Z

 \bigcirc

 \triangleleft

 \geq

Laminage circulaire

Vous souhaitez modéliser d'une manière précise tous les procédés de laminage circulaire? Cette formation FORGE® est faite pour vous!

l'automobile sont des industries qui utilisent données des cas de laminage circulaire radial, régulièrement le procédé de laminage circulaire vertical et radial-axial, de la création de l'anneau pour la production d'anneaux utilisés par exemple à la configuration du procédé tout en prenant pour des pièces de moteur.

Cette formation vous apprend, en deux journées , à simuler de manière efficace et précise ce

L'aéronautique, l'énergétique, mais aussi procédé. Vous découvrirez comment mettre en en compte la cinématique réelle du procédé de laminage. Vous découvrirez également comment utiliser les capteurs et marquage en laminage

NIVEAU

Intermédiaire - Utilisateurs souhaitant renforcer leurs compétences dans la simulation du laminage

PRÉREQUIS

De bonnes bases dans l'utilisation de FORGE® sont requises. Avoir suivi la formation "Débuter avec FORGE® " ou équivalent.

OBJECTIFS

- Mettre en données des cas de laminage circulaire, radial et radial-axial
- Utiliser la cinématique réelle du procédé pour mettre en données un cas de laminage circulaire, radial et radial-axial
- · Analyser les principaux résultats (forme, déformation, défauts éventuels, efforts sur les outils, etc.)

AUTRES FORMATIONS CONSEILLÉES

- FORGE® Maîtriser le logiciel
- FORGE® Optimisation automatique
- FORGE® Traitement thermique des aciers et des aluminiums

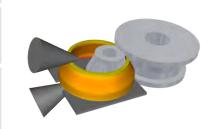
FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	1.5 jours	2400 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	 Présentation de Transvalor Objectifs de la formation
Mise en données - laminage circulaire radial générique	 Créer un anneau ou importer sa géométrie directement dans FORGE° Créer les géométries des outils en 3D Générer un maillage structuré pour l'anneau avec une méthode de maillage ALE (Arbitraire Lagrangien Eulérien) Générer un maillage pour un anneau non axisymétrique Revoir les paramètres de remaillage Fichier matériau Positionner les outils et la table Configurer les paramètres du procédé
Mise en données - laminage circulaire vertical générique	 Déterminer l'axe de gravité Définir les galets centreurs Configurer les paramètres de la simulation
Fonctionnalités	CapteursMarquage
Analyse des résultats	 Prédiction de la forme de l'anneau Vérification du remplissage des gravures Prédiction des défauts (par exemple cavité en V) Distribution de la température, des contraintes Evolution de la microstructure (taille de grains) Estimation des couples et des efforts maximums sur les outils

 \triangleleft

 \square `LL


Z

`Ш

 \supset

Z \bigcirc

Laminage ciruculaire avec évolution de la température

JOUR 2 > 08h30 - 12h00

Laminage circulaire radial-axial	 Vue schématique des éléments à renseigner Configuration du laminoir de type : vitesse d'agrandissement de l'anneau en fonction de son diamètre extérieur Configuration du laminoir de type : vitesse du mandrin en fonction du diamètre extérieur de l'anneau Configuration du pilotage avancé du rouleau supérieur
Pilotage de type : Vi- tesse d'agrandissement de l'anneau en fonc- tion de son diamètre extérieur	 Mise en données Lancement du calcul Analyse des résultats : courbe de pilotage
Conclusion	Questions diverses et évaluation de la formation

Laminage circulaire vertical

26 Transvalor Transvalor 27

Laminage des produits longs et plats

Vous souhaitez modéliser de manière précise vos procédés de laminage des produits longs et plats?

Le laminage est utilisé pour la production de produits longs (profilés ou tubes) ou de produits «stationnaire itérative» utilisée pour le laminage plats (plaques ou tôles) constitués de différents à chaud permet de simuler rapidement le train matériaux (acier, aluminium ou alliage de titane). de laminage et d'évaluer les tensions inter-cages. Avec FORGE®, il est possible de simuler ces deux Au cours de cette formation, vous découvrirez types de procédé de fabrication ainsi que le comment configurer des simulations de laminage laminage de tube utilisé dans l'industrie nucléaire ou pétrolière.

Il existe deux types d'approche. L'approche dite «incrémentale» permet de vérifier la conformité des profils laminés, de détecter les défauts de type centrage ou torsion à l'entrée des barres et de

déterminer le volume des chutes. L'approche dite par ces deux approches. Vous saurez également identifier les défauts de type centrage. Vous serez ainsi capable de simuler de manière efficace et précise les procédés de laminage.

NIVEAU

Intermédiaire - Utilisateurs souhaitant renforcer leurs compétences dans la simulation du laminage à chaud des produits longs et plats.

PRÉREQUIS

De bonnes bases dans l'utilisation de FORGE® sont requises. Avoir suivi la formation «Débuter avec FORGE®» ou équivalent.

OBJECTIFS

- Mettre en données des cas de laminage avec une approche incrémentale
- · Analyser et interpréter des résultats de calculs (déformation, évolution de température
- Identifier les défauts de type centrage ou torsion à l'extrémité des barres
- Comprendre l'approche stationnaire implémentée dans FORGE®
- Valider les caractéristiques du laminoir, par exemple le nombre nécessaire de cages de laminage, la vitesse initiale d'entrée, le taux de réduction par passe, la température et la vitesse de rotation des cylindres, les conditions de frottement etc.

11111	FORMATION	DURÉE	PRIX HT	PARTICIPANTS
\ \ \ \ \	Intra-entreprise	2 jours	3200 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

JOURT P GOILEG	121100 Et 131130 - 171100
Introduction	 Présentation de Transvalor Objectifs de la formation
Mise en données - laminage incrémental	 Importer les géométries Générer un maillage : définition du Bi-maillage Revoir les paramètres de remaillage Fichier matériau Positionner les outils Configurer la cinématique Déterminer l'axe de gravité
Fonctionnalités	CapteursMarquage
Analyse des résultats	 Déformation et évolution de la température Forme du produit à chaque instant du procédé Forces et couples exercés sur les cages de laminage Défauts de type centrage ou torsion à l'extrémité des barres Volume des chutes
Calcul du régime établi par la méthode stationnaire itérative	 Principe de la méthode Mise en données Géométrie initiale Option extrusion Direction de laminage Définition manuelle des longueurs Sélection manuelle du plan de départ Maillage de la géométrie Définition de la cinématique des rouleaux Direction de l'écoulement de la matière Fréquence de stockage (itérations) Nombre d'itérations du calcul Analyse des résultats sur les incréments de calcul finaux Température, contrainte équivalente Tensions inter-cages

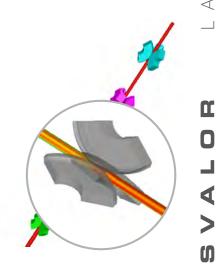
 \triangleleft

 \square `LLI

Z

`Ш U

 \sum


Cas de laminage avec une approche incrémentale

Principe de la méthode itérative stationnaire

JOUR 2 > 08h30 - 12h00 et 13h30 - 17h00

Mise en données de plusieurs calculs	 Calcul chaîné Calcul avec cages de rouleaux éloignés Calcul avec refroidissement entre passes Calcul chaîné avec groupes d'interface de maillage
Comparaisons Approche incrémentale et stationnaire itérative	 Analyse du produit au cours et après déformation Temps de calcul Limitation
Procédé client	 Mise en données Lancement de calcul Analyse des résultats
Conclusion	Questions diverses et évaluation de la formation

Cas de laminage avec approche

Électro-refoulage

Vous souhaitez optimiser votre procédé d'électro-refoulage et trouver les paramètres de vos machines de production? Cette formation est faite pour vous!

À l'issue de cette formation, vous serez capable de mise en forme électrique. La deuxième journée de mettre en données un cas d'électro-refoulage sera consacrée à la mise en données d'une de et d'analyser les résultats spécifiques à ce vos simulations. Les connaissances acquises procédé. Après quelques rappels théoriques au cours de cette formation vous permettront sur les phénomènes physiques mis en jeu, vous à terme d'optimiser vos procédés et de trouver étudierez les points clés de la mise en données les bons paramètres pour obtenir la préforme : définition du maillage dans les zones d'intérêt, optimale à forger. définition de l'entrée et de la sortie du courant. L'accent sera ensuite mis sur l'analyse des champs de résultats pertinents pour les procédés

NIVEAU

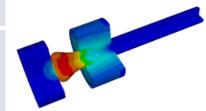
Intermédiaire - Utilisateurs souhaitant connaître les capacités de FORGE® dans le domaine de l'électro-refoulage et être capable de mettre en données et d'analyser leurs résultats.

PRÉREQUIS

De bonnes bases dans l'utilisation de FORGE® sont requises. Avoir suivi la formation «Débuter avec FORGE®» ou équivalent.

OBJECTIFS

- Maîtriser l'interface graphique
- · Comprendre les phénomènes physiques mis en jeu dans le procédé d'électro-refoulage
- · Mettre en données un cas d'électro-refoulage : maillage, définition du courant
- · Comprendre comment prédire avec précision :
- Données thermiques : chauffage, évolution de la température, etc.
- Données électriques : densité de courant, potentiel électrique, puissance de chauffage Joule, etc.
- Données cinématiques: mouvement des enclumes, direction, hauteur, vitesse…
- · Forme obtenue lors de la préforme
- · Continuité du marquage obtenu après l'opération finale de forge


AUTRES FORMATIONS CONSEILLÉES

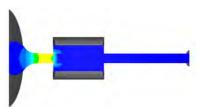
- FORGE® Optimisation automatique
- FORGE® Traitement thermique des aciers et des aluminiums

11111	FORMATION	DURÉE	PRIX HT	PARTICIPANTS
11111	Intra-entreprise	1.5 jours	2400 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	 Présentation de Transvalor Objectifs de la formation	
Modélisation	 Equation de conservation de la charge Equation de la chaleur Propriétés : résistivité, conductivité Couplage avec la métallurgie 	1
Mise en données d'un cas d'électro-refoulage	 Import des géométries Définition des matériaux Propriétés mécaniques Propriétés électriques Données TTT Maillage des différents objets Maillage adapté dans les zones de contact électrique et de grandes déformations Critère de remaillage Définition de la cinématique des outils Conditions aux limites Entrée et sortie du courant Contact électrique Paramètres généraux de la simulation Frottements, échanges thermiques et électriques Stockage Pas de temps 	Ca du
Fonctionnalités	MarquageCapteurs	Ca
Analyse des résultats	 Evolution de la température Etude des champs de contraintes et déformations Analyse de la distribution de courant Densité de courant 	

 \triangleleft \square


`LLI'

Z

Z

 \bigcirc

Cartographie de la température lors du procédé d'électro-refoulage

Cartographie de la densité de courant

JOUR 2 > 08h30 - 12h00

Procédé client	 Mise en données Lancement de calcul Analyse des résultats
Conclusion	Questions diverses et évaluation de la formation

Utiliser l'API Python pour automatiser les mises en données et analyse avec FORGE®

Vous souhaitez accroître votre productivité ? Ayez dès à présent connaissance des outils mis à votre disposition pour effectuer de manière automatique les étapes de mises en données et d'analyse de vos résultats.

Le temps que vous consacrez à créer vos projets de afficher uniquement les résultats dont vous avez simulations et à analyser les résultats de vos calculs parfois très chronophages.

Les scripts Python vont vous permettre de créer des projets, de lancer des calculs et d'analyser des résultats avec une automatisation maximale. Typiquement, vous pourrez créer votre procédé personnalisé, gérer vos objets, importer et générer des maillages, définir tous types de paramètres, application tierce depuis FORGE®, tout est possible générer automatiquement des variantes de calculs, et imaginable. Cette formation est faite pour vous !

besoin dans la configuration optimale, exporter est généralement très conséquent. Les opérations vos résultats et bien d'autres choses encore. que vous effectuez sont souvent redondantes et Cette nouvelle fonctionnalité offre de nombreux avantages: gain de temps, automatisation, sécurisation des projets, interconnexion avec vos autres outils numériques.

> Que vous souhaitiez automatiser tout ou partie de vos opérations, définir des données constantes ou de manière dynamique ou encore appeler une

NIVEAU

Intermédiaire

PRÉREQUIS

Disposer d'une première expérience des logiciels TRANSVALOR. Vous devez connaitre l'utilisation de l'interface NxT.

Disposer d'une première expérience en codage avec le langage Python.

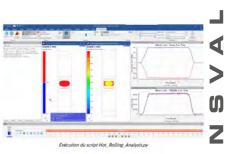
OBJECTIFS

- Découvrir ce que l'API Python peut vous apporter en automatisation
- Tirer profit des nouveautés de l'interface pour accélérer la mise en données et l'analyse des résultats

FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	2 jours	2800 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	 Présentation de Transvalor Objectifs de la formation
Pourquoi cette API ?	 Contexte Outils précédents mis à disposition Pré requis Limitations actuelles Perspectives
Structure des scripts	 Fonctionnement de la console Python Vocabulaire (notion de classes, fonctions et arguments) Liens entre les différents objets, simulations, attributs, propriétés
Scripts de mise en données	 Comprendre les scripts existants Travailler sur un script de mise en données complète d'étape Coder son propre script de mise en données
Scripts d'ana- lyse	 Comprendre les scripts existants Comment les adapter à vos besoins ? Coder son propre script d'analyse des résultats
Documenta- tion	 Explication de la documentation mise à disposition pour coder vos propres scripts de mise en données et d'analyse Python Help


 \triangleleft

 \square `LLI

JOUR 2 > 08h30 - 12h00 et 13h30 - 17h00

Mise en pratique sur automatisation de la mise en données	 Définition de la problématique et des étapes à automatiser Réalisation du script d'automatisation 	
Mise en pratique sur analyse des résultats	 Description des étapes d'analyse Réalisation des scripts d'automatisation 	
Perspectives	 Quelles possibilités pour aller plus loin et automatiser complètement la mise en données et l'analyse ? Paramètres variables, interfaces personnalisées, exécution en lignes de commande 	
Conclusion	Questions diverses et évaluation de la formation	

Traitement thermique des aciers et des aluminiums

Vous souhaitez anticiper les propriétés mécaniques et métallurgiques après traitement thermique? Prédire la dureté finale et les contraintes résiduelles ? Simuler une séquence complète ? Cette formation est pour vous!

traitements thermiques appliqués aux aciers contraintes, etc). Ainsi, vous serez en mesure forgés. A l'issue de cette formation, vous saurez de prédire les propriétés finales des pièces de réaliser des simulations de trempe martensitique, même que leur métallurgie, dans le cadre d'un de cémentation, d'austénitisation et de revenu, calcul global comprenant le forgeage et le travailler à partir de diagrammes TTT ou TRC traitement thermique associé. et surtout, analyser pleinement tous les résultats

Cette formation aborde les points-clés des de calcul (transformation de phase, dureté,

NIVEAU

Avancé - Utilisateurs souhaitant renforcer leurs compétences en simulation des traitements thermiques communément utilisés en forgeage.

PRÉREQUIS

Disposer de connaissances en science des matériaux ou en métallurgie. De bonnes bases dans l'utilisation de FORGE® sont requises.

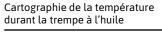
Avoir suivi la formation «Débuter avec FORGE®» ou équivalent.

OBJECTIFS

- Définir les conditions procédé en vue d'obtenir les meilleures propriétés mécaniques : accroissement de dureté superficielle, résistance en température, ductilité et tenue mécanique, contrainte résiduelle
- Pouvoir prédire les changements de microstructure durant le chauffage ou le refroidissement
- Observer l'influence de la diffusion de carbone sur les variations de dureté en surface
- Déterminer les conditions de traitement idéales pour réduire les temps de cycle

AUTRES FORMATIONS CONSEILLÉES

FORGE® - Induction et traitement thermique par induction


11111	FORMATION	DURÉE	PRIX HT	PARTICIPANTS
11111	Intra-entreprise	2 jours	3200 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	 Présentation de Transvalor Objectifs de la formation
Généralités	Diagramme Fe-Fe3CRappel des diagrammes TTT et TRC
Modélisation de la trempe	 Approximation du diagramme TRC à partir du diagramme TTT Exercice : générer les diagrammes TTT et TRC avec FORGE® Modèle couplé multi physique Détermination du coefficient d'échange grâce au module d'optimisation Exercice : modélisation de la trempe dans différents bains (huiles Houghton, solutions polymères) Exercice : trempe par sprays
Traitements thermiques des alliages d'aluminium	 Modélisation de la trempe - modèle QFA (Quench Factor Analysis) Durcissement par précipitation des aluminiums (vieillissement artificiel) modèle Shercliff Ashby

JOUR 2 > 08h30 - 12h00 et 13h30 - 17h00

Austénitisa- tion	 Génération du matériau composé de perlite et de ferrite Définition du cycle de chauffe Analyse des résultats : transformation de phase, taux d'austénite, optimisation du cycle de chauffe
Cémentation	 Génération du maillage anisotrope Définition du taux de carbone Diagramme TTT en fonction du taux de carbone Analyse des résultats : taux de carbone, transformation de phase, dureté
Revenu	 Modèle utilisé pour déterminer la dureté Exercice : modélisation du revenu après trempe Analyse des résultats : contraintes résiduelles, dureté, etc.
Autre	Utilisation des fichiers matériaux JMatPro®
Conclusion	Questions diverses et évaluation de la formation

Transvalor 35

 \geq

`LLI \bigcirc

 \bigcirc

 \geq

Induction et traitement thermique par induction

Comment optimiser le design d'un inducteur? Quel est l'impact du chauffage sur les pièces ? Quelle fréquence de courant appliquer ? Comment contrôler la température dans la section des pièces ? Comment optimiser la puissance consommée par les générateurs ? Vous souhaitez maîtriser vos procédés de chauffage par induction, cette formation est faite pour vous!

Après quelques rappels théoriques, vous thermique par induction. Vous saurez prédire apprendrez à mettre en données la simulation du les zones thermiquement affectées et utiliser chauffage d'un lopin statique ou passant à travers des inducteurs mobiles ou statiques. Ces un inducteur. Vous analyserez l'impact du design connaissances approfondies des phénomènes de l'inducteur, de la présence de concentrateurs, thermiques et électromagnétiques vous de différents réglages du générateur.

L'accent sera ensuite mis sur l'analyse structurale chauffage. des matériaux en abordant le traitement

permettront d'optimiser vos procédés de

NIVEAU

Avancé - Utilisateurs souhaitant renforcer leurs compétences dans la simulation de la chauffe par induction appliquée à la forge ou au traitement thermique.

PRÉREQUIS

Disposer des connaissances en science des matériaux ou en technologie d'induction. Avoir de bonnes bases dans l'utilisation de FORGE® sont requises

Avoir suivi la formation "Débuter avec FORGE®" ou équivalent.

OBJECTIFS

- Comprendre les modèles théoriques implémentés pour le procédé d'induction: équations de Maxwell, résolution thermique et algorithme de couplage
- · Savoir définir et modifier les différents paramètres procédé pouvant influer sur l'efficacité du chauffage (intensité et fréquence du courant entrant)
- Maîtriser la technique d'immersion de maillage
- Simuler le chauffage par induction avant forgeage ou avant traitement thermique
- Déterminer la profondeur de chauffe et évaluer la dimension de la zone thermiquement affectée
- Éviter les défauts et améliorer la qualité de la pièce manufacturée
- Optimiser les paramètres du générateur afin de réduire les coûts énergétiques et augmenter la productivité

AUTRES FORMATIONS CONSEILLÉES

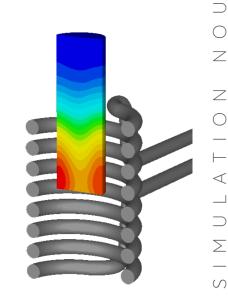
• FORGE® - Optimisation automatique

11111	FORMATION	DURÉE	PRIX HT	PARTICIPANTS
	Intra-entreprise	2 jours	3200 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	Présentation de TransvalorObjectifs de la formation
Modélisation	 Equations de Maxwell Equations de la thermique Couplage entre les deux équations Propriétés : résistance électrique, perméabilité magnétique, épaisseur de peau Couplage avec la métallurgie
Chauffage par induction (tutoriel)	 Calcul électromagnétique Définition de l'entrée et la sortie du courant Définition du maillage de l'environnement "maillage de l'air" Création du maillage global Maillage adapté à l'épaisseur de peau Vérification de la qualité du maillage global Calcul thermique Définition du lopin Paramètres de la simulation : stockage, temps de chauffe, couplage avec le calcul électromagnétique Lancement du calcul Chaînage en activant l'option "en boucle" Chaînage des simulations d'induction et de forgeage Analyse des résultats Evolution de la température, champ magnétique, potentiel magnétique, courant induit Afficher un champ sur une iso-volume

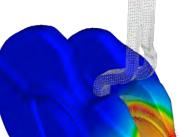
 \triangleleft


 \square `Ш Z

`LLI'

 \bigcirc

Ш


Formation d'austénite durant l'induction

Température du lopin durant chauffage par induction

JOUR 2 > 08h30 - 12h00 et 13h30 - 17h00

		le c
Symétrie	 Comment modéliser la symétrie Conditions aux limites des équations de Maxwell 	
Induction avec mouvement de la pièce ou de l'inducteur	 Mouvement continu ou pas à pas Application : plusieurs lopins se déplaçant à l'intérieur de l'inducteur 	4
Traitements par induction	 Cinématique appliquée à l'inducteur et/ou aux concentrateurs Exercice : chauffage par induction suivi d'une trempe ou processus de durcissement Analyse de la zone affectée thermiquement (ZAT) Changement de phase et amélioration des propriétés mécaniques (dureté de surface) 	
Nouvelles fonctionnalités	 Auto-induction Différents types de pilotage : potentiel constant (RMS) ou variable, intensité constante (RMS) ou variable, utilisation des circuits électriques liant le potentiel et l'intensité au niveau de l'inducteur (générateurs, circuits RLC, etc.) Champ induction stationnaire Multi-inducteurs ayant la même fréquence 	Ave et E
Conclusion	Questions diverses et évaluation de la formation	

EFD Induction

ec l'autorisation de Stellantis

Transvalor Transvalor 37

Optimisation automatique

Vous souhaitez optimiser votre procédé? Découvrez les solutions permettant d'identifier un lopin idéal pour un remplissage complet et sans défaut ou bien un design d'outillage minimisant les contraintes. Fini les plans d'expérience longs et fastidieux. Choisissez l'optimisation automatique!

L'optimisation automatique de FORGE® est conditions pour une mise en forme optimale de un outil extrêmement efficace. Grâce à son votre pièce. algorithme génétique, vous pourrez faire En complément, vous étudierez les techniques varier automatiquement toute une gamme de d'identification de paramètres par analyse paramètres procédé (dimensions des lopins, inverse et également les couplages avec les forme des outils, positionnement du lopin environnements CAO pour le design des préformes etc.). Ainsi, vous saurez identifier les meilleures et des outillages.

NIVEAU

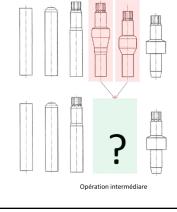
Avancé - Utilisateurs souhaitant maîtriser le principe de l'optimisation automatique en vue d'une utilisation fiable et efficace.

PRÉREQUIS

De bonnes bases dans l'utilisation de FORGE® et une maîtrise de l'interface graphique sont requises

Une connaissance parfaite du procédé est essentielle pour déterminer ce que vous souhaitez optimiser et comment

Les concepts de chaînage et de transition doivent être acquis.


OBJECTIFS

- · Comprendre le concept d'optimisation et son vocabulaire : algorithme génétique (individus et générations), minimisable, contrainte et action paramétrée
- Optimiser les procédés industriels
- Réduire le volume du lopin et les défauts sur la pièce finale
- · Identifier les paramètres par analyse inverse
- Coupler l'optimisation avec la CAO (PTC Creo Parametric, SolidWords, Catia)

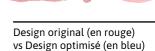
FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	2 jours	2400 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	Présentation de TransvalorObjectifs de la formation
Rappels sur le chaînage	 Concept du chaînage Transitions Chaînage 2D et 3D
Concepts généraux	 Concept de l'optimisation automatique Notion d'individus et de génération Définition d'un minimisable Définition d'une contrainte Définition des actions paramétrées
Optimisation du volume d'un lopin	 Mise en données Analyse des résultats de l'optimisation
Optimisation d'une ébauche laminée 3D	 Mise en données Lancement des calculs Analyse des résultats de l'optimisation
Détermination d'un coefficient de frottement	 Définition de la simulation Mise en données Interprétation des résultats
Détermination d'une rhéologie par analyse inverse	 Définition de la simulation Mise en données Interprétation des résultats

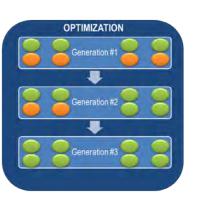
 \geq

 \triangleleft


 \square

Z \bigcirc

 \triangleleft


 \sum

Optimisation de l'opération intermédiaire dans une séquence de

JOUR 2 > 08h30 - 12h00

Détermination d'un coefficient d'échange thermique	 Définition de la simulation Mise en données Interprétation des résultats
Couplage de l'optimisation avec la CAO	 Concept du couplage Exemple d'utilisation avec PTC Creo Parametric Exemple d'utilisation avec SolidWorks
Innovation	Optimisation avec des valeurs discrètesOptimisation avec le plan d'expérience
Conclusion	Questions diverses et évaluation de la formation

Algorithme génétique

Développer ses propres routines utilisateur

Comment introduire ses propres modèles rhéologiques, ses lois de frottement ou encore ses critères d'endommagement? Apprenez à générer vos propres routines utilisateur.

Le logiciel FORGE® offre la possibilité d'accéder à un variables personnalisées (lois de comportement, certain nombre de routines Fortran que l'utilisateur d'endommagement, de fatigue, de frottement, etc.) peut modifier à sa guise.

Cette fonctionnalité permet aux ingénieurs de de vos propres routines utilisateur. Vous générerez recherche d'enrichir leurs modélisations grâce à l'implémentation de nouveaux modèles et

La deuxième journée sera consacrée au codage également votre solveur utilisateur.

NIVEAU

Avancé - Utilisateurs souhaitant intégrer leurs propres routines Fortran aux solveurs FORGE®.

PRÉREQUIS

Une solide expérience avec FORGE® est nécessaire ainsi que des notions de base en programmation.

OBJECTIFS

- Comprendre les différentes catégories de routines utilisateur
- · Compiler et créer des librairies dynamiques
- Implémenter des modèles type loi rhéologique, loi de frottement, critère d'endommagement
- · Calculer les variables supplémentaires ne figurant pas parmi les résultats calculés par le solveur standard

AUTRES FORMATIONS CONSEILLÉES

• FORGE® - Optimisation automatique

• FORGE® - Nouvelles fonctionnalités de FORGE® NxT 4.1

/////	FORMATION	DURÉE	PRIX HT	PARTICIPANTS
	Intra-entreprise	2 jours	3200 €/formation	1 à 3 personnes

JOUR 1 > 08n30 - 12n00 et 13n30 - 1/n00		
Introduction	Présentation de TransvalorObjectifs de la formation	
 Concept et origines Concept de librairie dynamique DLL Compilateurs MS Visual Studio Structure des répertoires Enregistrement d'un solveur utilisateur 		
	 Concepts généraux : Variables d'état Variables dynamiques Principe des noms de variables réservés Différents types de lois : Lois type LOIF : calcul de variables utilisateurs en surface libre ou au contact des outillages Lois type LOIV : calcul des variables utilisateurs en volume propre aux objets 	

Routines utilisateur

- Sous-types: Util, Evol, Meca, Intg, Rheo, Sig0 et Gsiz
- Application avec exercices de codage en Fortran 90 :
- Calcul de modèle d'usure sur les outillages (LoiF_Util)
- Implémentation de critères d'endommagement personnalisés (LoiV_Util)
- Calcul du tenseur des contraintes en coordonnées cylindriques (LoiV_Meca)
- Calcul du tenseur de déformation (LoiV Intg)
- Calcul d'une vitesse de refroidissement moyenne (LoiV Intg)
- Implémentation de lois d'évolution de frottement (LoiF_Evol)
- Implémentation de lois d'évolution des conditions d'échange thermique (LoiF_Evol)
- Programmation de lois de comportement matériau (Zener-Hollomon, Johnson-Cook...)
- · Exploitation sur cas concrets
- Mise en données et lancement de cas pratiques
- Analyse des résultats
- Approfondissement
- Fonctions utilisateur
- Fonctions spéciales préprogrammées

 \triangleleft

 \square `Ш Z

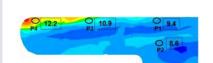
`Ш

U

Ш

 \supset

 \mathbb{Z}


 \supset

 \geq

 \bigcirc

 \triangleleft

0

Distribution de taille de grain Avec l'autorisation de Tecnalia

JOUR 2 > 08h30 - 12h00 et 13h30 - 17h00

Routines utilisateur client	 Application sur la base de configurations ou besoins spécifiques du client Codage et ajout de la routine utilisateur Compilation et création du solveur Lancement du calcul et visualisation des résultats
Conclusion	Questions diverses et évaluation de la formation

Débuter avec COLDFORM®

Prenez en main notre solution de simulation dédiée aux procédés de mise en forme à froid. Avec COLDFORM®, soyez prêt à simuler vos gammes en frappe à froid et exploiter tout le potentiel du logiciel!

Cette formation constitue votre première approche défaut, le contrôle dimensionnel (retour élastique) du logiciel COLDFORM®. La première journée vous et les contraintes résiduelles. permettra d'appréhender toutes les étapes de la Pour une meilleure interprétation des phénomènes plus poussée des notions telles que la détection de suivi de point.

mise en données, la procédure de lancement des physiques, des fonctionnalités clés seront aussi calculs et l'analyse des principaux résultats. La abordées telles que le calcul outillage (avec ou deuxième journée sera consacrée à une analyse sans frettage), les techniques de fibrage et le

NIVEAU

Débutant

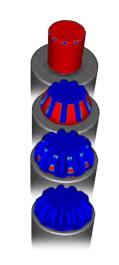
PRÉREQUIS

Cette formation ne nécessite pas de prérequis.

OBJECTIFS

- Mettre en données une simulation de frappe à froid suivant une gamme multi-
- · Lancer un calcul et/ou une chaîne de calcul
- Analyser les résultats de simulation
- Identifier et interpréter des défauts de mise en forme (replis, criques, etc.)
- Mesurer le retour élastique et quantifier les contraintes résiduelles
- · Visualiser un fibrage et suivre des grandeurs physiques (température, pression, etc.)
- en tout point de la pièce
- · Prédire des états de contraintes dans les outillages ou dans des assemblages
- · Personnaliser son environnement de travail

AUTRES FORMATIONS CONSEILLÉES



- Fondamentaux de la modélisation par éléments finis
- Nouvelles fonctionnalités de COLDFORM® NxT 4.1

FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	2 jours	2800 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	 Présentation de Transvalor Objectifs de la formation Rappels sur la méthode des éléments finis
Mise en données	 Présentation de l'environnement : concept de stores, procédé, cas, étape Import des géométries Maillage surfacique et volumique Définition de la cinématique Rappels sur : rhéologie, frottements et échanges thermiques Base de données matériaux (FPD) / création d'un fichier de forgeage à froid avec les données Re, Rm et A% Manipulations sur les objets (création, ébavurage, transfert 2D/3D) Mise en données d'un cas tutoriel (la vis) : forgeage à froid en 2D et 3D
Lancement des calculs	Lancement, arrêt, infosChaînage de simulations
Analyse des résultats	 Affichage des résultats, principaux scalaires et vecteurs, retour élastique Tracés de courbes, animations, export VTFx Analyse multi-fenêtres Gestion des animations et export des résultats
Mise en données d'une application industrielle	 Mise en données Lancement de calculs

 \triangleleft

 \square `Ш

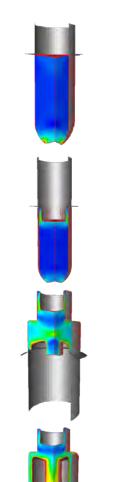
Z

`Ш

 \bigcirc

Ш

>


 \supset

Z

 \bigcirc

 \geq

Frappe à froid d'un engrenage conique avec évolution du contact

JOUR 2 > 08h30 - 12h00 et 13h30 - 17h00

Analyse des résultats industriels	Interprétation des résultats
Fonctionnalités	 Marquage et fibrage Capteurs prédéfinis et post-procédé Import assemblage Cisaillage, perçage et ébavurage du lopin
Calcul outillage	Approche découplée et couplée
Personnalisation d'environnement de travail	Création de modèles et de données spécifiques (matériaux, presses, frottements)
Conclusion	Questions diverses et évaluation de la formation

Frappe à froid d'une cage de soupape sur une presse transfert automatique

Nouvelles fonctionnalités de COLDFORM® NxT 4.1

Vous souhaitez accroître votre productivité? Ayez dès à présent les bons réflexes pour exploiter au mieux toutes les nouvelles fonctionnalités de la version NxT 4.1!

À l'issue de cette formation, vous pourrez utiliser nous allons plus loin, de nouvelles actions les nouvelles fonctionnalités de COLDFORM® NxT 4.1 et adopter toutes les bonnes pratiques pour une mise en données et une analyse de résultats facilitées.

COLDFORM® NxT 4.0 vous a offert une nouvelle expérience utilisateur via l'intégration du module d'optimisation dans la nouvelle interface graphique.

Les nouvelles fonctionnalités graphiques seront également abordées au cours de cette formation .Avec COLDFORM® NxT 4.1, solutions.

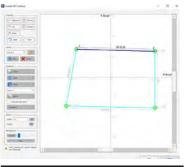
sont disponibles, et des paramètres liés sont disponibles parmi d'autres nouvelles fonctionnalités.

Vous pourrez apprécier les nouveaux développements tels que l'approche phase field utilisée lors du procédé de découpe et tirer profit de la réduction du temps de calcul en 2D. L'intégration du remaillage local en 3D permet d'améliorer la qualité et la précision des

NIVEAU

PRÉREQUIS

Disposer d'une première expérience du logiciel COLDFORM®.


OBJECTIFS

- Maîtriser toutes les nouvelles fonctionnalités de la version COLDFORM® NxT 4.1
- Tirer profit des nouveautés de l'interface pour accélérer la mise en données et l'analyse des résultats
- · Augmenter la qualité prédictive des simulations avec des mises en données plus
- Renforcer son expérience à partir de cas d'études concrets

FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	1 jour	1400 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	 Présentation de Transvalor Objectifs de la formation 	- (
Nouvelles fonctionnalités	 Améliorations du remailleur Outil d'analyse des résultats CAO 2D Visualisation des tenseurs et des vecteurs Personnalisations des légendes Résultats regroupés par catégories Affichage personnalisable 	
Material Viewer	 Interface graphique Lecture et modification des fichiers JMatPro, base de données FPD Base, générateur de rhéologie à froid 	-
API Python	 Introduction à l'API Python pour mettre en données et analyser automatiquement vos calculs Interaction utilisateur Affichage de sortie en temps réel 	
Optimisation automatique	 Concepts: individus, générations, minimisables, contraintes, actions paramétrées Cas d'application Analyse des résultats (meilleur individu, comparaison) Paramètres liés Nouvelles actions disponibles Définition directe des règles 	- () !
Cas de découpe	 Mise en données Avantage de l'approche phase field (champ de phase) Analyse des résultats 	
Conclusion	Questions diverses et évaluation de la formation	-

 \triangleleft

 \subseteq

`Ш

Z `Ш

 \bigcirc

Ш

 \supset

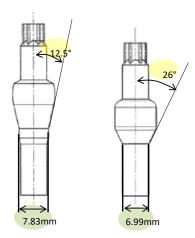
Z

Z

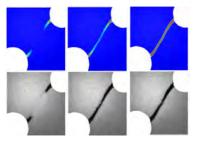
 \bigcirc

 \triangleleft

 \supset


 \geq

 \bigcirc


Outil de CAO 2D

Visualisation du tenseur de contrainte

Optimisation de la géométrie de

Simulation de l'amorçage et de la propagation d'une fissure

Maîtriser le logiciel

Approfondissez vos connaissances avec COLDFORM® et prenez en main les toutes dernières fonctionnalités du logiciel!

Grâce à cette formation, vous maîtriserez en Vous découvrirez comment exploiter le mode multiprofondeur la nouvelle interface graphique projets, la personnalisation des «stores» de données redessinée pour accélérer le processus de mise ou encore les techniques avancées de capteurs et en données et l'analyse des résultats. À l'issue de de marquage. Vous saurez également identifier cette formation, vous aurez une connaissance les défauts pour mieux analyser et comprendre accrue des toutes dernières fonctionnalités solveur. les résultats.

NIVEAU

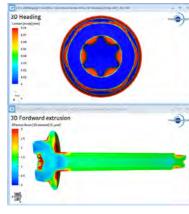
Intermédiaire - Utilisateurs souhaitant maîtriser les fondamentaux du logiciel et désireux d'appréhender toutes les fonctionnalités.

PRÉREQUIS

Disposer d'une première expérience du logiciel COLDFORM®.

OBJECTIFS

- Réaliser sa mise en données suivant le "workflow" de la nouvelle interface graphique
- · Assurer le lancement de calcul "étape par étape" ou bien "par gamme complète"
- · Comprendre et analyser les résultats
- · Personnaliser son environnement de travail


AUTRES FORMATIONS CONSEILLÉES

• COLDFORM® - Calcul outillage

FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	1.5 jours	2250 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	 Présentation de Transvalor Objectifs de la formation
Mise en données	 Importation de géométries, qualité du maillage, réparation surfacique locale et globale Paramètres de maillage : options avancées, miroir, export de la surface Transformation des objets : retournement, ajustement par la gravité Passage global 2D à 3D Données rhéologiques : générateur de rhéologie à froid, fichier tabulé de données de contrainte d'écoulement, comportement anisotrope Définition du frottement et échange thermique local
Lancement des calculs	 Lancement d'une étape ou d'un cas complet Nombre de cœurs optimal pour une simulation Gestionnaire de calculs Rapport de calculs
Analyse des résultats	 Identification des défauts courants : sous-remplissage, replis, fissures Tracés : énergie et efforts Comparaison des projets avec l'outil vue multi-projets Animation d'une ou plusieurs étapes du procédé Personnalisation de l'espace de travail
Fonctionnalités avancées	 Capteurs prédéfinis ou post-procédé (fixes ou mobiles) Marquage : suivi de la fibre neutre et de la surface cisaillée Identification des défauts d'aspiration par marquage sous peau Identification des défauts par analyse inverse
Personnalisation de l'environnement	 Personnaliser les données des stores et la mise en données Créer votre procédé ou étape de mise en données Enregistrer des macros pour automatiser la mise en données

 \triangleleft

 \subseteq `Ш

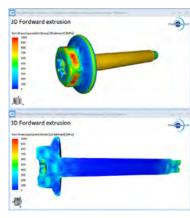
Z

`Ш

 \bigcirc

Ш

> \supset


Z

Z

 \bigcirc

 \triangleleft

 \supset \geq

Analyse multi-fenêtres

JOUR 2 > 08h30 - 12h00

Aspects numériques	 Gestion du pas de temps Techniques de remaillage et adaptation de maillage Outils analytiques et lissés
Personnalisation de l'environnement	 Forgeage Transition: forgeage dans une matrice à empreintes multiples Contact matière-matière, piégeage de gaz et de lubrifiant Routines utilisateur Concept général Sélection des variables prédéfinies
Conclusion	Questions diverses et évaluation de la formation

Gamme de forgeage d'une vis à tête hexagonale Torx - Avec l'autorisation de Miguel Altuna Institute

Transvalor 47 46 Transvalor

Calcul outillage

Pour l'élaboration de vos gammes en frappe à froid, vous souhaitez pouvoir répondre aux problématiques liées aux outillages : Comment accroître la durée de vie des outillages? Comment estimer les niveaux de contraintes et évaluer l'usure ? Comment dimensionner un assemblage pré-contraint par frettage ? Si vous voulez en savoir plus sur le calcul outillage pour la frappe à froid, alors cette formation est faite pour vous!

chaque méthode seront détaillés. Le deuxième jour, liées aux outillages. l'accent sera mis sur la mise en place de calcul avec

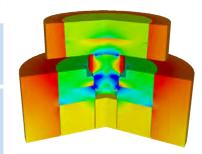
Dans l'optique de réduire le coût de revient des outils précontraints et sur la technique de "Virtual pièces et d'accélérer les cycles de production, Interference Fit" propre aux simulations 3D. Les l'intérêt pour le calcul outillage est grandissant exercices proposés permettront de comprendre dans le secteur de la frappe à froid. À l'issue de précisément les résultats de calcul (contrainte cette formation, vous saurez mettre en données, équivalente, contraintes principales, usure abrasive, analyser et interpréter vos calculs dans les temps de contact etc.). Vous disposerez ainsi d'un outillages. Plusieurs modes de calcul seront abordés panel complet de recommandations pour une (rigide, découplé, couplé) et les avantages de interprétation rapide et fiable des problématiques

NIVEAU

Intermédiaire - Utilisateurs souhaitant renforcer leurs connaissances en calcul outillage appliqué à la frappe à froid.

PRÉREQUIS

De bonnes bases dans l'utilisation de COLDFORM® sont requises. Avoir suivi la formation "Débuter avec COLDFORM®" ou équivalent.


OBJECTIFS

- Importer des fichiers d'assemblage au format CAO (*.stl, *.step, etc.)
- Travailler avec des outils précontraints et évaluer les conditions de frettage
- Simuler les comportements mécaniques et thermiques des outillages (rupture, fatigue)
- Analyser et interpréter les résultats (usure, contraintes, etc.)

FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	1.5 jours	2250 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	 Présentation de Transvalor Objectifs de la formation
Calculs outils rigides	 Pourquoi ce type de calcul ? Recommandations pour mailler en surface les outils 2D/3D Analyse des résultats de la simulation de forgeage d'outils rigides 2D/3D (usure abrasive, contrainte normale)
Calculs découplés	 Recommandations pour mailler en volume les outils 2D/3D Mise en données Analyse des résultats complémentaires sur outillage 2D/3D (Von Mises, contraintes principales)
Calculs couplés	 Pourquoi ce type de calcul ? Définition des contacts Maître-Maître et Maître-Esclave Mise en données 2D/3D Analyse des résultats (contraintes, température) Différentes options de calculs couplés
Comparaisons calculs découplés et couplés	 Ecoulement de matière Contrainte normale Usure abrasive Contrainte de Von Mises Déformation outillage Efforts de forgeage Choix du type de calcul

 \triangleleft

 \square

`Ш Z

`Ш

 \bigcirc

Ш

Ш

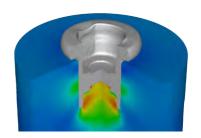
>

 \supset

 \bigcirc

Z

 \bigcirc


 \geq

Contrainte tangentielle dans un assemblage d'outils précontraints

JOUR 2 > 08h30 - 12h00

Outillage précontraint	 Définition du concept de précontrainte Interpénétration d'outils déformables en 2D Précontrainte virtuelle en 3D (VIF) Mise en données Visualisation et interprétation des résultats
Conclusion	Questions diverses et évaluation de la formation

Frappe à froid d'une fixation en acier inox - Distribution de la contrainte équivalente

Transvalor Transvalor 49

Utiliser l'API Python pour automatiser les mises en données et analyse avec COLDFORM®

Vous souhaitez accroître votre productivité ? Ayez dès à présent connaissance des outils mis à votre disposition pour effectuer de manière automatique les étapes de mises en données et d'analyse de vos résultats.

Le temps que vous consacrez à créer vos projets de besoin dans la configuration optimale, exporter simulations et à analyser les résultats de vos calculs vos résultats et bien d'autres choses encore. est généralement très conséquent. Les opérations Cette nouvelle fonctionnalité offre de nombreux que vous effectuez sont souvent redondantes et avantages : gain de temps, automatisation, parfois très chronophages.

Les scripts Python vont vous permettre de créer autres outils numériques. des projets, de lancer des calculs et d'analyser Que vous souhaitiez automatiser tout ou partie de des résultats avec une automatisation maximale. vos opérations, définir des données constantes ou Typiquement, vous pourrez créer votre procédé de manière dynamique ou encore appeler une personnalisé, gérer vos objets, importer et générer application tierce depuis COLDFORM®, tout est des maillages, définir tous types de paramètres, possible et imaginable. Cette formation est faite générer automatiquement des variantes de calculs, pour vous! afficher uniquement les résultats dont vous avez

sécurisation des projets, interconnexion avec vos

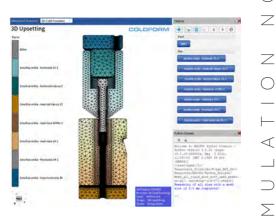
NIVEAU

Intermédiaire

PRÉREQUIS

Disposer d'une première expérience des logiciels TRANSVALOR. Vous devez connaitre l'utilisation de l'interface NxT.

Disposer d'une première expérience en codage avec le langage Python.


OBJECTIFS

- Découvrir ce que l'API Python peut vous apporter en automatisation
- · Tirer profit des nouveautés de l'interface pour accélérer la mise en données et l'analyse des résultats

FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	2 jours	2800 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	 Présentation de Transvalor Objectifs de la formation
Pourquoi cette API ?	 Contexte Outils précédents mis à disposition Pré requis Limitations actuelles Perspectives
Structure des scripts	 Fonctionnement de la console Python Vocabulaire (notion de classes, fonctions et arguments) Liens entre les différents objets, simulations, attributs, propriétés
Scripts de mise en données	 Comprendre les scripts existants Travailler sur un script de mise en données complète d'étape Coder son propre script de mise en données
Scripts d'analyse	 Comprendre les scripts existants Comment les adapter à vos besoins ? Coder son propre script d'analyse des résultats
Documentation	 Explication de la documentation mise à disposition pour coder vos propres scripts de mise en données et d'analyse Python Help

JOUR 2 > 08h30 - 12h00 et 13h30 - 17h00

Mise en pratique sur automatisation de la mise en données	 Définition de la problématique et des étapes à automatiser Réalisation du script d'automatisation
Mise en pratique sur analyse des résultats	 Description des étapes d'analyse Réalisation des scripts d'automatisation
Perspectives	 Quelles possibilités pour aller plus loin et automatiser complètement la mise en données et l'analyse ? Paramètres variables, interfaces personnalisées, exécution en lignes de commande
Conclusion	Questions diverses et évaluation de la formation

50 Transvalor Transvalor 51

 \geq

 \triangleleft

 \square `LL Z

`Ш

 \supset

Optimisation automatique

Vous souhaitez optimiser votre procédé? Découvrez les solutions permettant d'identifier un lopin idéal pour un remplissage complet et sans défaut ou bien un design d'outillage minimisant les contraintes. Fini les plans d'expérience longs et fastidieux. Choisissez l'optimisation automatique!

L'optimisation automatique COLDFORM® pour former votre pièce de manière optimale. est un outil extrêmement efficace. Grâce à De plus, vous étudierez les techniques d'identification son algorithme génétique, vous pouvez varier des paramètres en utilisant l'analyse inverse ainsi automatiquement toute une gamme de paramètres que les couplages avec les environnements CAO de processus (dimensions des lopins, formes des pour la conception des bloqueurs et des outils. outils, positionnement des lingots, etc.). Ainsi, vous pourrez identifier les meilleures conditions

NIVEAU

Avancé

PRÉREQUIS

Une bonne maîtrise de l'utilisation de COLDFORM® est nécessaire. Une connaissance parfaite du processus est essentielle pour déterminer ce que vous souhaitez optimiser et comment. Vous devez comprendre les concepts de l'enchaînement et des transitions.

OBJECTIFS

- Compréhension des concepts et termes de l'optimisation : algorithme génétique (individus et générations), minimisable, contrainte et action paramétrée
- Optimisation des processus industriels
- Réduction du volume des lopins et des défauts des pièces finies
- Identification des paramètres par rétro-ingénierie
- · Couplage de l'optimisation avec les logiciels de CAO (PTC Creo Parametric, SolidWorks et Catia)

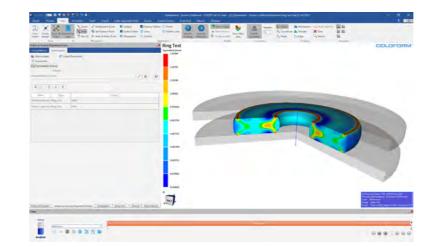
FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	1.5 jours	2400 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 14h00 - 17h00

Introduction	Présentation de TransvalorObjectifs de la formation
Rappels sur la chaîne	Concept de chaîneTransitionsChaînage 2D & 3D
Concepts généraux	 Concept d'optimisation automatique Notions d'individus et de générations Définition d'un minimisable Définition d'une contrainte Définition des actions configurées
Optimisation du volume de bille	ConfigurationAnalyse des résultats d'optimisation
Optimisation d'une charge de forgeage	ConfigurationLancement du calculAnalyse des résultats d'optimisation
Détermination d'un coefficient de frottement	Définition de la simulationConfigurationInterprétation des résultats
Détermination de la rhéologie par analyse inverse	Définition de la simulationConfigurationInterprétation des résultats

 \triangleleft

 \square `LL Z


`Ш

 \bigcirc

 \geq

JOUR 2 > 08h30 - 12h00

Couplage de l'optimisation avec la CAO	 Concept de couplage Exemple d'utilisation avec PTC Creo Parametric Exemple d'utilisation avec SolidWorks
Innovation	 Optimisation avec des valeurs discrètes Optimisation avec la méthode Design Of Experiment (DOE)
Conclusions	• Questions diverses et évaluation de la formation

52 Transvalor Transvalor 53

Débuter avec SIMHEAT®

Découvrez l'étendue des possibilités du tout dernier logiciel de la suite Transvalor, dédié au traitement thermique : SIMHEAT®. À l'issue de cette formation, soyez à même d'exploiter tout le potentiel du produit!

Cette formation constitue votre première approche plus poussée d'un panel complet de résultats du logiciel SIMHEAT®.

La première journée vous permettra d'appréhender toutes les étapes de la mise en Des fonctionnalités clés seront abordées données, la création des fichiers matériaux et telles que les traitements des aluminiums, les des diagrammes TTT, la procédure de lancement des calculs et l'analyse des principaux résultats. les traitements de surface. La personnalisation de La deuxième journée sera consacrée à l'analyse votre environnement de travail sera enfin abordée.

pour une meilleure interprétation des phénomènes

traitements thermiques par induction ainsi que

NIVEAU

Débutant

PRÉREQUIS

Cette formation ne nécessite pas de prérequis.

OBJECTIFS

- Découvrir l'interface de mise en données et d'analyse des résultats
- Créer son propre diagramme TTT à l'aide de SIMHEAT®
- Mettre en données une simulation de traitement thermique d'une pièce forgée ou formée à froid ou issue d'un procédé de fonderie
- Lancer un calcul et analyser les résultats de simulation
- Définir les conditions procédés en vue d'obtenir les meilleures propriétés mécaniques
- · Pouvoir prédire les changements de microstructure durant le chauffage ou le refroidissement
- Observer l'influence de la diffusion de carbone sur les variations de dureté en surface
- Déterminer les conditions de traitement idéales pour réduire les temps de cycle

FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	3 jours	4500 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	 Présentation de Transvalor Objectifs de la formation Rappels sur la méthode des éléments finis 		
Mise en données	 Présentation de l'environnement Concepts de store, procédé, cas, étape Import des géométries Maillages surfaciques et volumiques Définition de la cinématique (si nécessaire dans le procédé) Rhéologie et echanges thermiques Base de données des matériaux Application à un cas pratique Présentation de l'environnement de travail Lancement du calcul 		
Lancement des calculs	Lancement rapideGestionnaire de lots et simulations en chaîne		
Généralités	Diagramme Fe-Fe3CRappel des diagrammes TTT et TRC		
Modélisation de la trempe	 Approximation du diagramme TRC à partir du diagramme TTT Exercice : générer les diagrammes TTT et TRC avec FORGE® Modèle couplé multi-physique Exercice : modélisation de la trempe dans différents bains (huiles Houghton, solutions polymères) Exercice : trempe par sprays 		
Analyse des résultats	 Affichage des résultats, principaux scalaires et vecteurs Tracés de courbes, animations, export VTFx Analyse multi-fenêtres Gestion des animations et export des résultats 		

JOUR 2 > 08h30 - 12h00 et 13h30 - 17h00

Austénitisation	 Génération du matériau composé de perlite et de ferrite Définition du cycle de chauffe Analyse des résultats: transformation de phase, taux d'austénite, optimisation du cycle de chauffe
Cémentation	 Génération du maillage anisotrope Définition du taux de carbone Diagramme TTT en fonction du taux de carbone Analyse des résultats : taux de carbone, transformation de phase, dureté
Revenu	 Modèle utilisé pour déterminer la dureté Exercice: modélisation du revenu après une trempe Analyse des résultats: contraintes résiduelles, dureté, etc.
Optimisation	 Principe de base de l'optimisation Détermination du coefficient d'échange grâce à l'analyse inverse
Personnalisation de l'environnement de travail	Création de modèles et de données spécifiques (matériaux, échanges thermiques)

JOUR 3 > 08h30 - 12h00 et 13h30 - 17h00

		_
	Équations de MaxwellDéfinition du cycle de chauffage	A A
Modélisation	 Le couplage des aspects thermiques et électro- magnétiques 	`LLI
Modelisation	Propriétés : résistance électrique, perméabilité	7
	magnétique, épaisseur de peau, etc	`Ш
	Couplage avec la métallurgie	()
	COMPUTATION ÉLECTROMAGNÉTIQUE	O
	Définition du courant d'entrée et de sortie	ш
	Définition du maillage pour l'environnement	
	'Room mesh' - Création du maillage global	
	Maillage adapté à l'épaisseur de la peau	Ш
	Vérification de la qualité du maillage global	>
	COMPUTATION THERMIQUE	> 0
Chauffage par	- Définition du lopin	\bigcirc
induction (Cas pratique)	Paramètres de la simulation : stockage, temps de chauffage, couplage avec le calcl électromagnétique	Z
	DÉMARRAGE DU CALCUL	Z
	- Calcul en chaîne en réglant l'onglet 'In Loop'	\bigcirc
	- Simulation en chaîne d'induction et de formage	_
	ANALYSE DES RÉSULTATS	\vdash
		⋖
	 Évolution de la température, des champs magné- tiques, du potentiel magnétique, du courant induit 	
	Affichage d'un champ dans un isovolume	\supset
		\sum
Symétrie	Comment modéliser la symétrieConditions aux limites de l'équation de Maxwell	SIMULATIO
Induction avec mou-	Mouvement continu ou pas à pas	0)
vement de la pièce	Application : un certain nombre de lingots se	⋖
ou de l'inducteur	déplaçant à l'intérieur de l'inducteur	

Conclusion

Chauffage par induction d'un vilebrequin

Questions diverses et évaluation de la formation

Traitement thermique en surface (cémentation, trempe, revenu)

Durcissement par précipitation des aluminiums (vieillissement artificiel)

 \bigcirc

 \triangleleft

 \sum

Traitements thermiques

Quel est le meilleur design pour un inducteur ? Quelle fréquence devez-vous appliquer? Quel est l'impact sur la métallurgie de la pièce ? Vous devez maîtriser votre chauffage par induction pour contrôler les profils de température en coupe transversale et optimiser la puissance utilisée par les générateurs.

Après quelques rappels théoriques, vous étudierez le chauffage pour le traitement thermique, en comment implémenter le chauffage par induction mettant l'accent sur les aspects métallurgiques, simulé avec un lopin statique ou un lopin en en prédisant la zone thermiquement affectée et mouvement à travers l'inducteur. Vous serez l'utilisation d'inducteurs statiques ou mobiles. Ainsi, capable d'analyser l'influence du design de vous comprendrez les phénomènes thermiques et l'inducteur, de la présence de concentrateurs et électromagnétiques pour optimiser les conditions de tester l'impact des différents paramètres du de chauffage. générateur. Ensuite, vous vous concentrerez sur

NIVEAU

Débutant

PRÉREQUIS

Cette formation ne nécessite pas de prérequis.

OBJECTIFS

- Découverte de l'interface
- Configuration des données pour une simulation de traitement thermique d'une pièce forgée, formée à froid ou coulée
- Lancement d'un calcul unique et/ou d'une séquence de calculs
- Analyse des résultats de simulation
- Définition des conditions du processus afin d'obtenir les meilleures propriétés
- · Être capable de prédire les changements de microstructure pendant le chauffage ou le refroidissement
- Créer votre propre diagramme TTT à l'aide de SIMHEAT®
- Observer l'influence de la diffusion du carbone sur les variations de dureté de surface
- Déterminer les conditions de traitement idéales afin de réduire les temps de cycle
- Personnaliser votre environnement de travail

FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	2 jours	2800 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 14h00 - 17h00

Introduction	Présentation de Transvalor Objectifs de la formation
Généralités	Diagramme Fe-Fe3C Revue des diagrammes TTT et TRC
Modélisation du trempage	 Approximation du diagramme TRC à l'aide du diagramme TTT Exercice: génération des diagrammes TTT et TRC avec SIMHEAT° Modèle multi-physique couplé Exercice: modélisation du trempage dans différents bains (huiles Houghton, solutions polymères) Exercice: trempage par pulvérisation
Analyse des résultats	 Affichage des résultats, principaux scalaires et vecteurs Graphiques, animations, exports VTFx Analyse multi-fenêtres Gestion des animations et exportation des résultats

JOUR 2 > 08h30 - 12h00 et 14h00 - 17h00

Austénitisation	 Génération d'un matériau composé de perlite et de ferrite Définition du cycle de chauffage Analyse du rapport : transformation de phase, teneur en austénite, optimisation du cycle de chauffage
Carburation	 Génération de maillage anisotrope Définition de la teneur en carbone Diagramme TTT en fonction de la teneur en carbone Analyse des résultats : teneur en carbone, transformation de phase, dureté
Ressuage	 Modèle utilisé pour déterminer la dureté Exercice : modélisation du revenu après trempage Analyse des résultats : contraintes résiduelles, dureté, etc.
Optimisation	 Principe de base de l'optimisation Détermination du coefficient d'échange grâce à l'analyse inverse
Personnalisation de l'environnement de travail	Création de modèles spécifiques et de jeux de données spécifiques (matériaux, échanges thermiques, etc.)
Conclusion	- Questions diverses et évaluation de la formation

56 Transvalor Transvalor 57

Utiliser l'API Python pour automatiser les mises en données et analyse avec SIMHEAT®

Vous souhaitez accroître votre productivité ? Ayez dès à présent connaissance des outils mis à votre disposition pour effectuer de manière automatique les étapes de mises en données et d'analyse de vos résultats.

Le temps que vous consacrez à créer vos projets de besoin dans la configuration optimale, exporter simulations et à analyser les résultats de vos calculs vos résultats et bien d'autres choses encore. est généralement très conséquent. Les opérations Cette nouvelle fonctionnalité offre de nombreux que vous effectuez sont souvent redondantes et avantages: gain de temps, automatisation, parfois très chronophages.

Les scripts Python vont vous permettre de créer des projets, de lancer des calculs et d'analyser des résultats avec une automatisation maximale. Typiquement, vous pourrez créer votre procédé personnalisé, gérer vos objets, importer et générer des maillages, définir tous types de paramètres, générer automatiquement des variantes de calculs, afficher uniquement les résultats dont vous avez

sécurisation des projets, interconnexion avec vos autres outils numériques.

Que vous souhaitiez automatiser tout ou partie de vos opérations, définir des données constantes ou de manière dynamique ou encore appeler une application tierce depuis SIMHEAT®, tout est possible et imaginable. Cette formation est faite pour vous!

NIVEAU

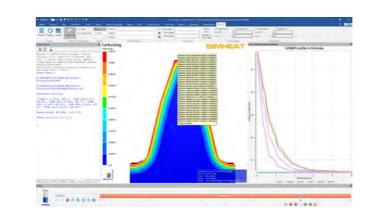
PRÉREQUIS

Disposer d'une première expérience des logiciels TRANSVALOR. Vous devez connaitre l'utilisation de l'interface NxT.

Disposer d'une première expérience en codage avec le langage Python.

OBJECTIFS

- Découvrir ce que l'API Python peut vous apporter en automatisation
- Tirer profit des nouveautés de l'interface pour accélérer la mise en données et l'analyse des résultats


FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	2 jours	2800 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	Présentation de TransvalorObjectifs de la formation
Pourquoi cette API ?	 Contexte Outils précédents mis à disposition Pré requis Limitations actuelles Perspectives
Structure des scripts	 Fonctionnement de la console Python Vocabulaire (notion de classes, fonctions et arguments) Liens entre les différents objets, simulations, attributs, propriétés
Scripts de mise en données	 Comprendre les scripts existants Travailler sur un script de mise en données complète d'étape Coder son propre script de mise en données
Scripts d'analyse	 Comprendre les scripts existants Comment les adapter à vos besoins ? Coder son propre script d'analyse des résultats
Documentation	 Explication de la documentation mise à disposition pour coder vos propres scripts de mise en données et d'analyse Python Help

JOUR 2 > 08h30 - 12h00 et 13h30 - 17h00

Mise en pratique sur automatisation de la mise en données	 Définition de la problématique et des étapes à automatiser Réalisation du script d'automatisation
Mise en pratique sur analyse des résultats	 Description des étapes d'analyse Réalisation des scripts d'automatisation
Perspectives	 Quelles possibilités pour aller plus loin et automatiser complètement la mise en données et l'analyse ? Paramètres variables, interfaces personnalisées, exécution en lignes de commande
Conclusion	- Questions diverses et évaluation de la formation

Transvalor 59 58 Transvalor

Optimisation automatique

Vous souhaitez optimiser votre procédé ? Découvrez les solutions permettant d'identifier un lopin idéal pour un remplissage complet et sans défaut ou bien un design d'outillage minimisant les contraintes. Fini les plans d'expérience longs et fastidieux. Choisissez l'optimisation automatique!

L'optimisation automatique de SIMHEAT® est pourrez identifier les meilleures conditions pour un outil extrêmement efficace. Grâce à son traiter votre pièce de manière optimale. En outre, algorithme génétique, vous pouvez faire varier vous verrez des techniques d'analyse inverse qui automatiquement toute une gamme de paramètres vous permettront de rapprocher votre simulation de processus (dimensions de la bille, formes des à la réalité. outils, positionnement de la bille, etc.). Ainsi, vous

NIVEAU

Avancé

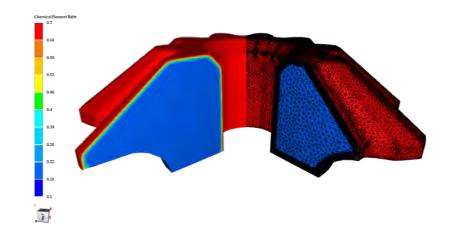
PRÉREQUIS

Une bonne maîtrise de l'utilisation de SIMHEAT® est nécessaire. Une connaissance parfaite du processus est essentielle pour déterminer ce que vous souhaitez optimiser et comment le faire.

Il est également important de comprendre les concepts de chaînage et de transitions.

OBJECTIFS

- · Compréhension des concepts et termes de l'optimisation : algorithme génétique
- et générations), minimisable, contrainte et action paramétrée
- Optimisation des processus industriels
- · Identification des paramètres par analyse inverse


FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	1.5 jours	2400 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	Présentation de Transvalor Objectifs de la formation
Concepts généraux	 Concept d'optimisation automatique Notions d'individus et de générations Définition d'un minimisable Définition d'une contrainte Définition des actions configurées
Détermination de la rhéologie par analyse inverse	 Définition de la simulation Configuration Interprétation des résultats

JOUR 2 > 08h30 - 12h00

Détermination d'un coefficient de transfert de chaleur	Définition du cas Configuration Interprétation des résultats
Innovation	Optimisation avec des valeurs discrètes Optimisation avec la méthode Design Of Experiment (DOE)
Conclusions	Questions et évaluation de la formation

THERCAST®

Débuter avec THERCAST® Coulée de lingots

Pour tous les secteurs de la coulée en lingotière, découvrez l'étendue des possibilités offertes par THERCAST[®].

Cette formation constitue votre première critères de rupture (hot tearing) et l'impact des approche du logiciel THERCAST®.

La première journée vous permettra Plusieurs fonctionnalités clés seront également d'appréhender toutes les étapes de la mise abordées telles que le suivi de points, la prise en en données, la procédure de lancement des compte de diagrammes TTT, la prédiction de calculs et l'analyse des principaux résultats. La ségrégation, la gestion du décochage et, pour finir, deuxième journée sera consacrée à une analyse la personnalisation de l'environnement de travail. plus poussée de nouvelles notions telles que les

échanges thermiques (influence des lames d'air).

NIVEAU

PRÉREQUIS

Cette formation ne nécessite pas de prérequis.

OBJECTIFS

- · Mettre en données une simulation de coulée en lingotière
- Lancer un calcul et/ou une chaîne de calcul
- Analyser les résultats de simulation
- Étudier l'ensemble du procédé (remplissage depuis la mère de coulée, refroidissement et démoulage)
- Prendre en considération les poudres exothermiques et les réfractaires
- Identifier et interpréter les défauts de coulée (retassure, porosité, criques, etc.)
- Étudier les variations des grandeurs physiques (température, pression, etc.) en tout point de la pièce et des moules
- · Prédire des états de contraintes et de déformation des moules
- Personnaliser son environnement de travail

FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	2 jours	2800 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	 Présentation de Transvalor Objectifs de la formation
Environnement graphique	 Présentation de l'environnement de travail Concept de projets avec gestion par cas et étapes
Outil de gestion des fichiers matériaux	 Création d'un matériau à partir de sa composition nominale Gestion du système d'unités Visualisation des propriétés physiques
Représentation de la structure de grains	 Outil de représentation en figure de pôles Application pour un ou plusieurs grains Visualisation de l'orientation privilégiée des grains
Modèles de ségrégation	 Génération de données pour les calculs avec ségrégation Prise en compte de la concentration des éléments, des ségrégations à l'échelle micro et macro Introduction aux modèles de micro-ségrégation
Tutoriel Coulée de lingot	 Import des géométries Maillages surfaciques et volumiques Définition des domaines Gestion des paramètres de contrôle de la simulation Types de calcul Revue des modèles d'échange thermique et de frottement entre domaines Revue des critères de prédiction de défauts
Lancement des calculs	 Lancement rapide Gestionnaire de calculs et chaînage de simulations Procédure de reprise de calculs
Options avancées d'analyse des résultats	 Affichage des résultats scalaires (température, fraction liquide, front de matière, déformation) Options d'affichage : iso-volumes, plans de coupe, tracés de courbes, échelles, représentation lissée ou continue Identification des zones sensibles (retassures, porosités) Analyses combinées : options multi-cas, multi-fenêtrages Animations, fonction export VTFx
Procédé industriel	Mise en données et lancement de calcul

 \triangleleft

 \square

`LLI Z

`Ш

>

 \supset

Z

 \bigcirc

 \geq

 \bigcirc

Distribution de la température en cours de solidification

Structure de grains

JOUR 2 > 08h30 - 12h00 et 13h30 - 17h00

Analyse des résultats du procédé industriel	 Interprétation des résultats Influence des échanges et/ou de la forme du moule sur les résultats Optimisation des données du procédé en vue de minimiser les défauts Gestion du démoulage
Fonctionnalités complémentaires	 Capteurs prédéfinis et post-procédé Critères de rupture à chaud Remaillage Diagramme TTT et TRC
Personnalisation de l'environnement de travail	Création de modèles et de données spécifiques (matériaux, échanges thermiques, frottements)
Conclusion	Questions diverses et évaluation de la formation

Suivi de particules lors du remplissage d'un lingot

Débuter avec THERCAST® Coulée continue

Avec THERCAST®, simulez l'évolution du métal dans une installation de coulée depuis la lingotière jusqu'en sortie de refroidissement secondaire!

Dispensée sur trois jours, cette formation journée mettra l'accent sur les différents types constitue votre première approche du logiciel THERCAST® pour les applications de coulée résultats.

toutes les phases de la mise en données avec internes, la prédiction de ségrégation, la prise en une attention particulière donnée à l'étape de compte de diagrammes TTT, le suivi de points et construction de la machine de coulée. La deuxième la personnalisation de l'environnement de travail.

de calculs ainsi que sur l'analyse des principaux

Pour finir, plusieurs fonctionnalités clés seront La première journée vous permettra d'appréhender abordées telles que l'identification de défauts

NIVEAU

Débutant

PRÉREQUIS

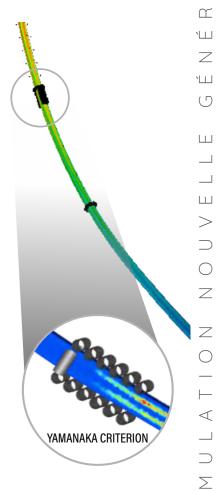
Cette formation ne nécessite pas de prérequis.

OBJECTIFS

- Mettre en données un cas de coulée continue
- Lancer un calcul et/ou une chaîne de calcul
- Analyser les résultats de simulation
- Utiliser l'interface de définition de la machine de coulée continue
- Étudier l'ensemble du procédé (refroidissement primaire et secondaire)
- Identifier et interpréter des défauts de coulée (gonflement, criques, etc.)
- Étudier les variations des grandeurs physiques (température, pression, etc.) en tout point du produit coulé (brame, bloom)
- Personnaliser son environnement de travail

FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	3 jours	4200 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00


Introduction	Présentation de TransvalorObjectifs de la formation
Environnement graphique	 Présentation de l'environnement de travail Concept de projets avec gestion par cas et étapes Description complète du backstage
Outil de gestion des fichiers matériaux	 Création d'un matériau à partir de sa composition nominale Gestion du système d'unités Visualisation des propriétés physiques
Modèles de ségrégations	 Génération de données pour les calculs avec ségrégation Prise en compte de la concentration des éléments, des ségrégations à l'échelle micro et macro Introduction aux modèles de micro-ségrégation
Cas tutoriel coulée continue	 Construction de la machine de coulée continue Maillages surfaciques et volumiques Gestion des paramètres de contrôle de la simulation Revue des modèles d'échange thermique et de frottement entre domaines Revue des critères de prédiction de défauts

JOUR 2 > 08h30 - 12h00 et 13h30 - 17h00

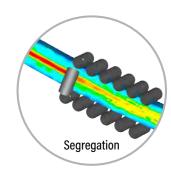
Lancement des calculs	Lancement rapide	
Analyse des résultats	 Affichage des résultats (température, fraction liquide, front de matière) Iso-volumes, plans de coupe, tracés de courbes, échelles, représentation lissée ou continue Identification des zones sensibles (retassures, porosités) Exploitation des résultats : animations, export VTFx 	
Cas industriel	Mise en données et lancement de calcul	

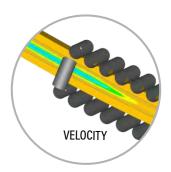
JOUR 3 > 08h30 - 12h00 et 13h30 - 17h00

Analyse des résultats du cas industriel	 Influence des échanges et/ou de la forme de la lingotière Optimisation des données process en vue de minimiser les défauts
Fonctionnalités complémentaires	 Capteurs prédéfinis ou post-procédé Critères de rupture à chaud
Notions avancées	 Remaillage, diagrammes TTT et TRC Personnalisation d'environnement : matériaux, échange thermique, frottements
Conclusion	Questions diverses et évaluation de la formation

 \geq

 \triangleleft


 \supset


 \triangleleft

 \supset

 \bigcirc

0

THERCAST®

Débuter avec THERCAST® Procédés de fonderie

Quelles que soient les technologies que vous utilisez, THERCAST® est une aide précieuse pour concevoir au mieux vos pièces de fonderie.

Moulage en sable, coulée en coquille, coulée basse selon la technique de fonderie utilisée. THERCAST® permet de simuler de façon prédictive les défauts. vos procédés de fonderie.

vous apprendrez à configurer et lancer un projet rayonnement et le cyclage thermique.

pression, coulée sous pression et autres applications, L'analyse des résultats sera abordée pour étudier

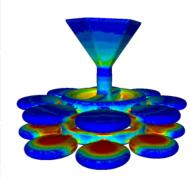
Lors de la deuxième journée, l'accent sera mis sur Durant la première journée de cette formation, certaines fonctionnalités avancées comme l'auto-

NIVEAU

Débutant

PRÉREQUIS

Cette formation ne nécessite pas de prérequis.


OBJECTIFS

- Mettre en données une simulation de fonderie
- · Lancer un calcul et/ou une chaîne de calcul
- Analyser les résultats de simulation
- Étudier l'ensemble du procédé (remplissage, refroidissement)
- Étudier les variations des grandeurs physiques (température, fraction liquide, etc.)
- Identifier et interpréter les défauts de la pièce (retassure, porosité, etc.)
- · Personnaliser son environnement de travail

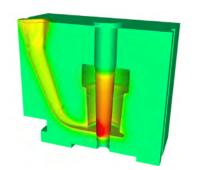
FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	3 jours	4200 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	 Présentation de Transvalor Objectifs de la formation Rappels sur la méthode des éléments finis
Environnement graphique	 Présentation de l'environnement de travail Concept de projets avec gestion par cas et étapes Description complète du backstage
Outil de gestion des fichiers matériaux	 Création d'un matériau à partir de sa composition nominale Gestion du système d'unités Visualisation des propriétés physiques
Modèles de ségrégations	 Génération de données pour les calculs avec ségrégation Prise en compte de la concentration des éléments, des ségrégations à l'échelle micro et macro Introduction aux modèles de micro-ségrégation
Représentation de la structure de grains	 Outil de représentation en figure de pôles Visualisation de l'orientation privilégiée des grains
Tutoriel Coulée fonderie en moule rigide ou virtuel	 Configuration des unités du projet Définition des objets (métal, broche, moule) Maillage: qualité, génération Définition des échanges entre le moule et le sol Définition de la cinématique de la broche Définition du type de calcul: hydraulique Définition des critères calculés Définition du remplissage initial Définition des propriétés du remplissage Définition des paramètres de la simulation
Lancement des calculs	Lancement rapide Procédure de reprise des calculs

 \triangleleft

 \square `Ш Z


`Ш

 \supset

Z

Z \bigcirc

Fonderie de précision à la cire perdue

Coulée en coquille gravité

JOUR 2 > 08h30 - 12h00 et 13h30 - 17h00

Options avancées d'analyse des résultats	 Affichage des résultats scalaires (température, fraction liquide) Options d'affichage: iso-volumes, plans de coupe, tracés de courbes Identification des zones sensibles (retassures, porosités) Analyses combinées: options multi-cas, multi-fenêtrages Exploitation des résultats: animations, export VTFx
Cas industriel	Mise en données, lancement du calcul et analyse des résultats

JOUR 3 > 08h30 - 12h00 et 13h30 - 17h00

Fonctionnalités	 Capteurs prédéfinis et post-procédé Cyclage thermique avec application à la coulée sous pression Mouvements complexes des objets avec application à la coulée sous pression et à la coulée basculée Auto-rayonnement entre différents domaines
Application : Moulage à la cire perdue	 Création de la coque solide (ou carapace) avec génération d'une sur-épaisseur à partir de la surface initiale Définition d'une coque surfacique et/ou volumique
Conclusion	- Questions diverses et évaluation de la formation

Coulée basculée

Transvalor 67 66 Transvalor

Nouvelles fonctionnalités de THERCAST® NxT 3.0

Vous êtes déjà familier avec le nouvel environnement THERCAST® NxT et vous souhaitez accroître votre maîtrise du logiciel ? Découvrez les toutes dernières nouveautés de la version NxT 3.0 et adoptez dès à présent les bonnes pratiques pour une exploitation idéale du logiciel!

Cette formation vous apprendra à utiliser pleinement votre secteur d'activité. THERCAST® NxT 3.0 offre toutes les fonctionnalités de la version NxT 3.0 une meilleure expérience utilisateur avec une Vous découvrirez tout d'abord les nouveautés de personnalisation de l'interface, une navigation plus l'interface graphique. Vous vous exercerez ensuite simple, ainsi que de nouveaux raccourcis. à l'aide de différents tutoriels correspondant à

NIVEAU

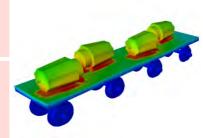
Intermédiaire

PRÉREQUIS

Disposer d'une première expérience du logiciel THERCAST®.

OBJECTIFS

- Maîtriser toutes les nouvelles fonctionnalités de la version THERCAST®
- Tirer profit de ces fonctionnalités en fonction de votre secteur d'activité
- Tirer profit de la simulation du brassage électromagnétique
- · Améliorer la qualité des pièces coulées grâce à des résultats toujours plus prédictifs


FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	1 jour	1400 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	Présentation de TransvalorObjectifs de la formation	
Nouvelles fonctionnalités de l'interface	 Améliorations du maillage Légendes personnalisées Résultats par catégorie Affichage personnalisable Modèles simplifiés Graphes pour chaque objet 	
Nouvelles fonctionnalités	 Options numériques avancées Calcul de bulles Tension de surface Viscosité Effet Marangoni Modèle de perméabilité de Darcy Option pour vider le remplissage initial Remplissage multi-matériaux Types d'enrichissement pour la macro-ségrégation 	- F
API Python	 Introduction à l'API Python pour mettre en données et analyser automatiquement vos calculs Enregistreur Python Interaction utilisateur Affichage de sortie en temps réel 	
Mousse perdue	 Définir le matériel de la cavité Remplacement de la mousse par le métal Visualisation des résultats du métal et la mousse 	
Brassage Electromagnétique	COMPUTATION ÉLECTROMAGNÉTIQUE Définition du courant d'entrée et de sortie Définition du maillage pour l'environnement Définition du maillage global Maillage adapté à l'épaisseur de peau Vérification de la qualité du maillage global CALCUL THERMIQUE Définition du lopin Paramètres de la simulation : stockage, temps de chauffage, couplage avec calcul électromagnétique LANCEMENT DU CALCUL Calcul chaîné avec l'onglet 'en boucle' Induction chaînée et simulation de la coulée ANALYSE DES RÉSULTATS Évolution de la température, des champs magnétiques, du potentiel magnétique, du courant induit	F
Optimisation	 Concepts: individus, générations, minimisables, contraintes, actions paramétrées Cas d'étude 	
		-

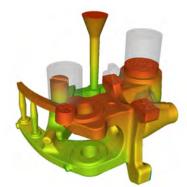
Questions diverses et évaluation de la formation

Conclusion

 \triangleleft

 \subseteq

`LLI' Z


`LLI'

 \bigcirc

rise en compte e l'auto-rayonnement

emplissage par godet de coulée

Cartographie de la température pendant le remplissage

Utiliser l'API Python pour automatiser les mises en données et analyse avec THERCAST®

Vous souhaitez accroître votre productivité ? Ayez dès à présent connaissance des outils mis à votre disposition pour effectuer de manière automatique les étapes de mises en données et d'analyse de vos résultats.

redondantes et parfois très chronophages. créer des projets, de lancer des calculs et numériques. d'analyser des résultats avec une automatisation Que vous souhaitiez automatiser tout ou partie de maximale. Typiquement, vous pourrez créer vos opérations, définir des données constantes votre procédé personnalisé, gérer vos objets, importer et générer des maillages, définir tous types de paramètres, générer automatiquement est possible et imaginable. Cette formation est des variantes de calculs, afficher uniquement

Le temps que vous consacrez à créer vos projets

les résultats dont vous avez besoin dans la de simulations et à analyser les résultats de vos configuration optimale, exporter vos résultats calculs est généralement très conséquent. Les et bien d'autres choses encore. Cette nouvelle opérations que vous effectuez sont souvent fonctionnalité offre de nombreux avantages: gain de temps, automatisation, sécurisation des Les scripts Python vont vous permettre de projets, interconnexion avec vos autres outils

> ou de manière dynamique ou encore appeler une application tierce depuis THERCAST®, tout faite pour vous!

NIVEAU

Intermédiaire

PRÉREQUIS

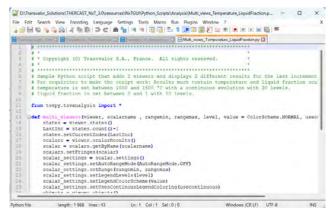
Disposer d'une première expérience des logiciels TRANSVALOR. Vous devez connaitre l'utilisation de l'interface NxT.

Disposer d'une première expérience en codage avec le langage PYTHON

OBJECTIFS

- · Découvrir ce que l'API Python peut vous apporter en automatisation
- Tirer profit des nouveautés de l'interface pour accélérer la mise en données et l'analyse des résultats

FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	2 jours	2800 €/formation	1 à 3 personnes


JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	Présentation de TransvalorObjectifs de la formation	
Pourquoi cette API ?	 Contexte Outils précédents mis à disposition Pré requis Limitations actuelles Perspectives 	
Structure des scripts	 Fonctionnement de la console Python Vocabulaire (notion de classes, fonctions et arguments) Liens entre les différents objets, simulations, attributs, propriétés 	
Scripts de mise en données	 Comprendre les scripts existants Travailler sur un script de mise en données complète d'étape Coder son propre script de mise en données 	
Scripts d'analyse	 Comprendre les scripts existants Comment les adapter à vos besoins ? Coder son propre script d'analyse des résultats 	
Documentation	 Explication de la documentation mise à disposition pour coder vos propres scripts de mise en données et d'analyse Python Help 	

JOUR 2 > 08h30 - 12h00 et 13h30 - 17h00

Mise en pratique sur automatisation de la mise en données	 Définition de la problématique et des étapes à automatiser Réalisation du script d'automatisation
Mise en pratique sur analyse des résultats	 Description des étapes d'analyse Réalisation des scripts d'automatisation
Perspectives	 Quelles possibilités pour aller plus loin et automatiser complètement la mise en données et l'analyse ? Paramètres variables, interfaces personnalisées, exécution en lignes de commande
Conclusion	Questions diverses et évaluation de la formation

70 Transvalor

 \triangleleft

 \square `LLI

Z

`Ш

 \bigcirc

Ш

 \bigcirc

 \sum

Maîtriser le logiciel

À l'issue de cette formation, vous aurez une compréhension plus approfondie de THERCAST®, et vous serez également capable de construire aisément des modèles avancés qui fournissent des résultats significatifs.

Cette formation s'adresse à ceux qui souhaitent utiliser THERCAST® à son plein potentiel. Nous prenons le temps d'expliquer en détail le fonctionnement de THERCAST®, non seulement la théorie fondamentale, mais aussi la démarche de construction de modèles avancés et comment interpréter les résultats.

NIVEAU

Avancé

PRÉREQUIS

Disposer d'une première expérience du logiciel THERCAST®.

OBJECTIFS

- Aperçu des principales équations et algorithmes de la multi-physique
- Réalisation de votre configuration de données conformément au flux de travail
- Analyser et comparer des cas d'étude avec différentes configurations
- Comprendre et analyser les résultats

AUTRES FORMATIONS CONSEILLÉES

• Nouvelles fonctionnalités de THERCAST® NxT 3.0

FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	2 jours	2800 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	Présentation de TransvalorObjectifs de la formation	
Multi-physique (Théorie)	 Thermique Thermo-mécanique Macroségrégation Conditions aux limites Équations constitutives pour le liquide, le solide et la solidification Modèle turbulent 	
Outil de données sur les matériaux	 Lecture des données Données minimales requises Macroségrégation Microstructure et microségrégation Écoulement hétérogène du liquide Importation de données à partir d'un fichier JMatPro 	
Cas d'étude de macro- ségrégation	 Présentation de la simulation Analyse des résultats Influence de l'enrichissement Visualisation des scalaires Multi-fenêtres synchronisées 	

JOUR 2 > 08h30 - 12h00 et 13h30 - 17h00

Maillage	 Réparation de maillage Technique de rupture des éléments allongés Maillage des vides Adaptation de maillage Algorithme Exemples visuels Astuces et conseils
Options avancées de configuration des données	 Entrée Filtre Tension de surface Moule poreux Simulations en chaîne
Modèles de calcul avancés	RayonnementMéthode CAFE
Options avancées d'analyse des résultats	 Capteurs, inclusions, échantillons et bulles Stockage et pas de temps Animation multi-fenêtres synchronisée Meilleure lisibilité Actions personnalisées
Conclusion	Questions diverses et évaluation de la formation

Optimisation automatique

Vous souhaitez optimiser votre procédé ? Découvrez les solutions permettant d'identifier un lopin idéal pour un remplissage complet et sans défaut ou bien un design d'outillage minimisant les contraintes. Fini les plans d'expérience longs et fastidieux. Choisissez l'optimisation automatique!

utiliser THERCAST® dans toute sa puissance. avancés et comment interpréter les résultats. Nous prenons le temps d'expliquer en détail le fonctionnement de THERCAST®, non seulement la théorie fondamentale, mais aussi

Cette formation s'adresse à ceux qui souhaitent le raisonnement pour construire des modèles

NIVEAU

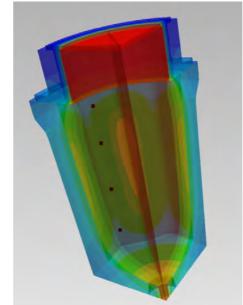
Avancé

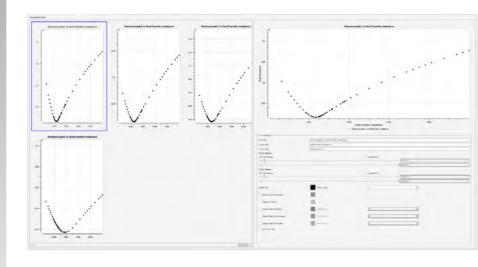
PRÉREQUIS

Une première expérience avec le logiciel THERCAST® est requise.

OBJECTIFS

- Aperçu des principales équations et algorithmes multi-physiques
- Effectuer la configuration de vos données selon le flux de travail recommandé
- Analyser et comparer des études de cas avec différentes configurations
- Comprendre et analyser les résultats


FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	1.5 jours	2400 €/formation	1 à 3 personnes


JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	Présentation de TransvalorObjectifs de la formation	
Concepts généraux	 Concept d'optimisation automatique Notions d'individus et de générations Définition d'un minimisable Définition d'une contrainte Définition des actions configurées 	
Identification de la perméabilité d'un filtre	 Définition de la configuration Définition du minimisable, de la contrainte et de l'action paramétrée Définition du nombre de générations et d'individus Lancement du calcul en mode parallèle Analyse d'un individu Classification des meilleurs individus Création d'un nouveau cas à partir d'un individu optimal 	

JOUR 2 > 08h30 - 12h00

Identification du coefficient de transfert de chaleur	 Définition de la configuration Définition du minimisable, de la contrainte et de l'action paramétrée Définition du nombre de générations et d'individus Lancement du calcul en mode parallèle Analyse de la courbe de la fonction coût Observation de l'influence des paramètres
Conclusions	- Questions et évaluation de la formation

74 Transvalor

 \square `LLI Z

`LLI

U

 \bigcirc

Débuter avec DIGIMU®

Découvrez et apprenez à utiliser DIGIMU®, votre solution de simulation pour l'évolution microstructurale.

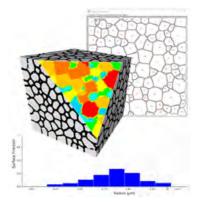
Cette formation a pour vocation de vous faire Vous travaillerez sur différentes techniques de découvrir comment utiliser notre logiciel DIGIMU® modélisation de croissance des grains et de pour simuler les évolutions microstructurales au recristallisation dynamique. cours des procédés de mise en forme des métaux À l'issue de cette journée, vous saurez également à l'échelle mésoscopique et sur des Volumes analyser les résultats de ces calculs. Elémentaires Représentatifs (VER).

NIVEAU

Débutant

PRÉREQUIS

Cette formation nécessite de bonnes bases en microstructure et recristallisation.


OBJECTIFS

- Maîtriser l'interface graphique
- Modéliser à l'échelle du grain (plusieurs millimètres) la croissance des grains par capillarité sur des Volumes Elémentaires Représentatifs (VER) en 2D et 3D.
- Modéliser la croissance des grains avec ou sans particules de seconde phase
- Importer la distribution des grains à partir de données expérimentales
- Récupérer le chemin thermomécanique depuis une simulation FORGE®
- Prévoir les évolutions microstructurales se produisant pendant les procédés thermomécaniques et les traitements thermiques des alliages métalliques
- Modéliser la recristallisation dynamique et post-dynamique
- Analyser les résultats de simulation

FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	1 jour	1400 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

	Présentation de Transvalor
Introduction	Objectifs de la formation
Mise en données Cas tutoriel : croissance de grains	 Concept de projet Paramètres de la simulation Température et temps du procédé Fréquence de stockage Stockage de la distribution de taille de grains Outil de génération Polycristal Micrographe Fichier matériau Maillage AAA : Adaptatif Anisotrope Automatique
Lancement des calculs	Lancement rapide, arrêt, reprise de calcul
Analyse des résultats	 Affichage des résultats : évolution des joints de grains, taille de grains équivalents, coordinance des grains (nombre de voisins) Histogramme de taille des grains Tracés de courbes : évolution de taille de grains, nombre de grains Animations, export
Autres tutoriels	 Phénomène d'ancrage des joints de grains (Smith Zener Pinning) Recristallisation dynamique - recristallisation post dynamique Recristallisation dynamique - recristallisation post-dynamique 4 passes Recristallisation statique SRX: Traitement des aspects germination et croissance des grains recristallisés dans une matrice déformée
Fonctionnalités	 Import d'un chemin thermomécanique depuis FORGE® Chaînage
Analyse des résultats d'une application industrielle	 Interprétation des résultats : joint de grains, distance au joint de grains, densité de dislocation, énergie, diamètre équivalent de grains Distribution de taille de grains (histogrammes, plans de coupe) Routines utilisateur : aperçu rapide du principe des routines utilisateur dans DIGIMU® 4.0.
Identification du fichier matériau	Aperçu rapide de la procédure d'identification des paramètres
Conclusion	Questions diverses et évaluation de la formation

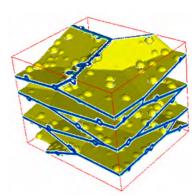
 \geq

 \triangleleft

 \square `Ш

Z `Ш

 \bigcirc


Ш

Z

 \bigcirc

 \geq

 \bigcirc

Évolution des joints de grains et germination au cours d'un procédé de forgeage

 \bigcirc

Nouvelles fonctionnalités de DIGIMU® 5.0

fonctionnalités implémentées dans DIGIMU® et fonctionnalités apportent des améliorations vous souhaitez en apprendre plus, cette formation significatives aux matériaux et processus déjà est faite pour vous. Vous appréhenderez le traités, tout en ouvrant la voie à la simulation durcissement hétérogène, la distribution de taille de nouveaux matériaux et processus. des noyaux, les frontières de grains hétérogènes, la recristallisation dynamique continue, l'évolution des précipités et le phénomène de traînée des solutés.

Si vous connaissez déjà de nombreuses Nous vous montrerons ensuite comment ces

NIVEAU

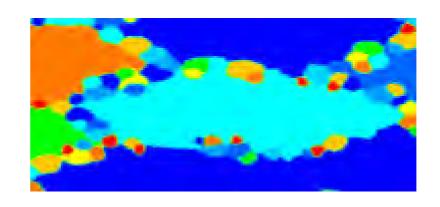
Débutant

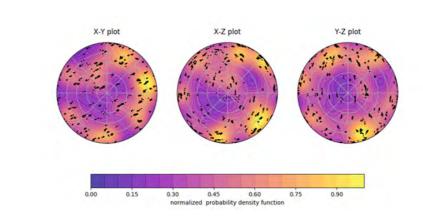
PRÉREQUIS

Une bonne connaissance de la microstructure et de la recristallisation est requise.

OBJECTIFS

- Maîtriser l'interface graphique
- Maîtriser les bases de DIGIMU®
- Découvrir toutes les fonctionnalités développées dans DIGIMU® V5.0
- Modéliser la croissance des grains avec ou sans particules de seconde phase
- · Prédire les changements microstructuraux lors des processus thermomécaniques et


traitements thermiques des alliages métalliques


- Modéliser la recristallisation dynamique et post-dynamique
- Analyser les résultats de simulation
- Utiliser les nouveaux graphiques de sortie complets

FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	1 jour	1400 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	Présentation de TransvalorObjectifs de la formation
Rappel des fonctionnalités de DIGIMU® V4.0	 Croissance des grains, avec ou sans particules Recristallisation dynamique, recristallisation post dynamique
Évolution de la population de préci- pités	 Nouvelles fonctionnalités de l'outil de génération des polycristaux Explication des modèles
Énergies des frontières de grains hétérogènes	Explication des modèlesExercices
Recristallisation conti- nue	ModèleExerciceNouveaux outils d'analyse graphique
Conclusion	Questions diverses et évaluation de la formation

Débuter avec REM3D® Application moussage

Démarrez l'expérience REM3D® et simulez vos procédés de moulage de mousses. Vous disposerez ainsi d'une longueur d'avance pour comprendre les phénomènes physiques afin de viser une meilleure optimisation de vos procédés actuels.

du logiciel REM3D® pour le procédé d'injection- les bases essentielles du moussage chimique et expansion de mousses PU. À partir d'exemples vous apprendrez à exploiter des fonctionnalités inspirés d'applications industrielles, vous aborderez indispensables telles que les capteurs ou les isoles différents aspects de la dépose et de l'expansion volumes. La deuxième journée sera également des mousses. Vous apprendrez toutes les étapes consacrée à l'étude plus poussée de cas industriels, nécessaires à commencer par la mise en illustrant comment des variations sur les conditions données, puis le lancement de la simulation et procédé influent sur l'optimisation des moules et enfin l'analyse des résultats. Durant la deuxième les temps de cycle.

Cette formation constitue votre première approche journée, vous aurez aussi la possibilité de revoir

NIVEAU

Débutant

PRÉREQUIS

Cette formation ne nécessite pas de prérequis.

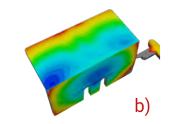
OBJECTIFS

- Mettre en données une simulation moulage de mousse PU
- Lancer un calcul sur une machine multi-cœurs
- Analyser les résultats
- Identifier et interpréter les défauts d'injection-expansion (sous-remplissage, etc.)
- Suivre des grandeurs physiques (température, densité, etc.) en tout point de la pièce
- Tester l'influence des paramètres procédés (masse injectée, débit, position des seuils, température de régulation, etc.)
- Comprendre comment caractériser des mousses PU

/////	FORMATION	DURÉE	PRIX HT	PARTICIPANTS
	Intra-entreprise	2 jours	2600 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	 Présentation de Transvalor Rappels sur la méthode des éléments finis Objectifs de la simulation 	
Mise en données	 Présentation de l'environnement Concepts: stores, procédés, cas, étape Import des géométries Maillages surfacique et volumique Définition des paramètres procédés: débit, point d'injection, température Définition du matériau: température, rhéologie Définition du moule: température, propriétés Définition du plan de symétrie Définition des capteurs eulériens ou lagrangiens: suivre des points du matériau et enregistrer certains champs de résultats Gestion des paramètres de la simulation: Pas de temps, temps de stockage Critères d'arrêt: temps maximum, température maximale 	
Modélisation de la mousse polyuréthane	 Principes généraux de la réaction chimique Modélisation des phases d'injection et d'expansion Moyens de caractérisation expérimentaux 	
Cas tutoriel	 Mise en données d'un cas tutoriel mini réfrigérateur Lancement du calcul - Lancement rapide Première analyse 	
Analyse des résultats	 Affichage des résultats: température, front de matière, épaisseur solidifiée Tracés de courbes, animations, export VTFx 	
Application industrielle	- Mise en données et lancement de calcul	

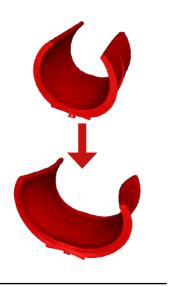

 \triangleleft

 \square `LLI'

Z

`LLI'

 \supset \sum



Observation à la fin du calcul de la déformée de la pièce : a) Remaillage adaptatif automatique b) Déformée projetée c) Déformation amplifiée x10

Analyse des résultats de l'application industrielle	 Analyse et interprétation des résultats: évolution de la densité, taux de gaz, évolution de la température Analyses graphiques: masse injectée, débit, flux d'air des évents, etc.
Influence des para- mètres du procédé	 Distribution de la mousse Régulation du refroidissement Positionnement des évents Equilibrage du moule & inclinaison
Notions avancées	Remaillage AAA (Automatique Adaptative Anisotrope)
Conclusion	Questions diverses et évaluation de la formation

Déformation amplifiée x10

Découvrir REM3D® NxT 3.0

La nouvelle interface graphique unifiée pour la mise en données, le lancement et l'analyse des résultats est maintenant disponible avec REM3D®. Cette formation est le bon moment pour l'appréhender et voir tous les bénéfices attendus.

briques que sont GLPre pour la mise en données, 'mise en données' au mode 'analyse' sans avoir à le lanceur pour démarrer vos calculs et GLView changer d'interface. Les actions de vérification des Inova pour analyser les résultats de vos calculs. mises en données sont simplifiées, la comparaison Désormais, Transvalor propose une interface des cas est facilitée. graphique unifiée. Cette formation vous permettra Inscrivez-vous à cette formation et laissez-nous d'obtenir les bénéfices de cette interface unique. vous montrer tous les avantages de cette interface Vous pourrez désormais, en utilisant les mêmes unique. commandes, mettre en données et analyser les

Vous utilisez régulièrement REM3D® avec ses trois résultats. Vous pourrez également passer du mode

NIVEAU

PRÉREQUIS

Avoir déjà suivi la formation «Débuter avec REM3D®». Connaître les anciennes interfaces graphiques GLPre, Lanceur et INOVA

OBJECTIFS

- Se familiariser avec l'interface graphique unifiée NxT
- · Comprendre le fonctionnement de l'interface graphique
- Mettre en données une simulation
- · Lancer un calcul sur un ou plusieurs cœurs
- · Analyser les résultats de simulation
- Personnaliser son environnement de travail

FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	1 jour	1400 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

	12110001000111100
Introduction	 Présentation de Transvalor Rappels sur la méthode des éléments finis Objectifs de la simulation
Mise en données	 Présentation de l'environnement Concepts de stores, procédés, cas et étapes Import des géométries Maillages surfaciques et volumiques Définition des paramètres procédés (injection, maintien et refroidissement) Définition du matériau : température, rhéologie Définition du moule : température, propriétés Définition du plan de symétrie Gestion des paramètres de contrôle de la simulation :
Lancement des calculs	 Lancement rapide Gestionnaire de calculs et chaînage de simulations
Analyse des résultats	 Affichage des résultats, principaux scalaires et vecteurs Tracés de courbes, animations, export VTFx Analyse multi-fenêtres Gestion des animations & export des résultats
Personnalisation de l'environnement de travail	Création de modèles et de données spécifiques (matériaux, procédés)
Conclusion	Questions diverses et évaluation de la formation

 \triangleleft

`LLI'

Z

U

olication Automobile

Représentation de phase d'expansion

Transvalor 83 82 Transvalor

Débuter avec Z-set

Cette formation est une introduction à la simulation par éléments finis avec Z-set, logiciel de calcul et d'analyse des structures non linéaires et des matériaux.

Ce cours d'initiation offre une introduction rapide de l'analyse structurale non linéaire avec Z-set en et complète aux applications du logiciel Z-set. Il mettant l'accent sur la maîtrise du workflow et de s'adresse aux ingénieurs qui souhaitent utiliser la mise en données. Z-set comme solveur éléments finis pour simuler Vos questions sur le solveur Zébulon EF trouveront des problèmes thermomécaniques non linéaires. enfin une réponse. Cette formation d'une journée enseigne les bases

NIVEAU

Débutant

PRÉREQUIS

Avoir de bonnes bases en analyse par la méthode des éléments finis.

OBJECTIFS

- Maîtriser le workflow de Z-set
- Mettre en données d'analyses structurales non linéaires
- Lancer un calcul
- Visualiser, interpréter et analyser des résultats
- Post-traitement: cas d'analyse simples

	FORMATION	DURÉE	PRIX HT	PARTICIPANTS
)	Intra-entreprise	1 jour	1400 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	 Présentation de Transvalor Objectifs de la formation 	
Workflow et mise en données de la simulation	 Revue rapide de l'installation du logiciel (Linux, Windows), variables d'environnement Présentation du logiciel Z-set (documentation, base de tests) Présentation des modules du logiciel et des fichiers de données d'entrée spécifiques (maillage, fichier matériau, fichier principal de simulation, fichier de post-traitement) Exécution de commandes, mots clés (-m, -pp) Génération de maillage avec Z-master, importation de maillage Présentation détaillée du fichier de données d'entrée Zébulon Attribution des conditions limites Rhéologie, fiche matériau, données matériau Analyse en sortie Analyse de tutoriels (2D, 3D, linéaire, non linéaire) 	Fla tub
Calculs	 Lancement rapide, exécution multicœur Procédure de redémarrage du calcul 	
Analyse des résultats	 Fichiers de résultats Visualisation des résultats: déplacements, réactions, contrainte de Von Mises, variables matériau Extraction simple de données (valeurs nodales, visualisation sur les groupes d'éléments) Visualisation de courbes, animations Post-traitement des résultats (exemple simple) 	
Conclusions	Questions diverses et évaluation de la formation	Ave

Z

 \triangleleft

 \square `Ш

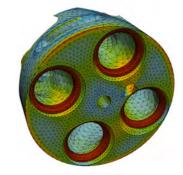
Z

`LLI

 \bigcirc

Ш

Z


Z \bigcirc

 \triangleleft

 \geq

0

lambage plastique par torsion d'un ube à parois minces

ec l'autorisation du Groupe Renault

84 Transvalor Transvalor 85

Débuter avec Z-cracks

L'analyse des fissures de fatigue vous intéresse? Vous souhaitez pouvoir prédire avec précision leurs chemins de propagation et la cinétique de fissuration ? Découvrez comment utiliser Z-cracks, le module de simulation 3D de mécanique de la rupture.

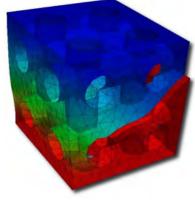
Cette formation d'une journée est destinée aux L'objectif de cette formation est d'apprendre à ingénieurs et aux chercheurs qui possèdent déjà mener des analyses de fissures en statique et à une expérience approfondie en mécanique de la simuler leur propagation en vous présentant les rupture.

capacités du module Z-cracks.

NIVEAU

PRÉREQUIS

Avoir de bonnes bases en mécanique de la rupture.


OBJECTIFS

- Comprendre les principes et le workflow de Z-cracks
- Mettre en données les simulations de fissuration en statique et de propagation de fissures
- Lancer un calcul
- Visualiser, interpréter et analyser des résultats
- Présentation des fonctionnalités avancées

	FORMATION	DURÉE	PRIX HT	PARTICIPANTS
)	Intra-entreprise	1 jour	1400 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	 Présentation de Transvalor Objectifs de la formation 	
Workflow et mise en données de la simulation	 Revue rapide de l'installation du logiciel (Linux, Windows), des variables d'environnement, de la connexion aux solveurs FE externes Présentation du logiciel Z-set (documentation, base de tests) Exécution de scripts Présentation de l'interface graphique de Z-cracks et de ses fonctions de bases Débuter : importation de modèles Définition et ajout de fissures, règles et stratégies de remaillage Facteurs d'intensité de contrainte : mise en données de l'analyse FIC Analyse de propagation : mise en données et modèles de propagation Présentation des scripts de Z-cracks Analyse de cas avec les tutoriels 	
Calculs	Lancement rapide, exécution multicœur Procédure de redémarrage du calcul	
Analyse des résultats	 Fichiers de résultats Visualisation des résultats, visualisation de courbes Fusion des résultats et générer des animations 	
Fonctionnalités avancées	 Options avancées Modèles de matériaux non linéaires Front de fissure et contact entre lèvres Lois de propagation utilisateur Missions de chargement complexes Scripts d'automatisation des simulations 	
Conclusions	Questions diverses et évaluation de la formation	

Z

 \triangleleft

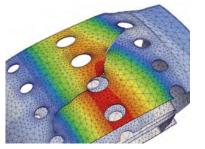
 \square `Ш

Z

`

 \bigcirc

Ш


Ш

 \bigcirc Z

 \bigcirc

 \geq

 \bigcirc

Simulation numérique d'une chambre de combustion fissurée sous chargements cycliques mécaniques et thermiques

Connexion de Z-mat aux solveurs EF externes

Z-mat comporte plusieurs logiciels constituant un ensemble d'outils efficaces pour la définition et la simulation des matériaux. Dans cette formation, vous découvrirez comment les modèles de matériaux avancés de Z-mat peuvent être utilisés en connexion avec les principaux solveurs éléments finis du marché.

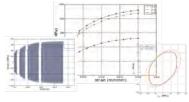
et viscoplastiques.

Cette session de formation d'une journée enseigne Les participants apprendront à maîtriser les les bases de l'utilisation de Z-mat et des principaux aspects techniques de Z-mat, ses outils et options solveurs EF externes tel que Abaqus, Ansys et ainsi que les interfaces d'analyse de résultats Samcef. À ce programme s'ajoute la présentation permettant d'utiliser les modules Z-mat et Z-post d'un large éventail de modèles constitutifs plastiques de visualisation et post-traitement des données.

NIVEAU

PRÉREQUIS

Avoir de bonnes bases en modélisation des matériaux.


OBJECTIFS

- Comprendre les principes des routines utilisateur pour définir des lois de comportement matériaux
- Mettre en données les simulations avec des modèles de matériaux linéaires et non linéaires
- Lancer un calcul
- · Visualiser, interpréter et analyser des résultats

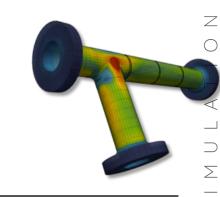
FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	1 jour	1400 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	 Présentation de Transvalor Objectifs de la formation 	
Workflow et mise en données de la simulation	 Revue rapide de l'installation du logiciel (Linux, Windows), des variables d'environnement, de la connexion aux solveurs EF externes Présentation du logiciel Z-set (documentation, base de tests) Débuter : modèle de matériau natif vs. modèle de matériau utilisateur Exemples de modèles classiques de matériaux de Z-mat Z-sim : driver de modèles de matériau Variables internes, stockage, utilitaire Zpreload, cas 2D/3D Mise en données d'un calcul couplé Z-mat/solveurs EF externes Analyse de cas avec les tutoriels 	_ L
Calculs	 Scripts de lancement de simulation Exécution sur machine multicœur 	- A
Analyse des résultats	 Fichiers de résultats Compréhension des champs stockés Visualisation des résultats avec les visualiseurs natifs et Z-master 	(<u>(</u>
Fonctionnalités avancées	 Commandes et options avancées (sélection de la méthode d'intégration modificateurs, debug) Modèles multi-matériaux Éléments structuraux, analyse des contraintes planes Soumission au cluster Connexion à Z-post (exemple simple de post-traitement) 	
Conclusions	- Questions diverses et évaluation de la formation	

 \square `Ш

Z


`LLI

U

Ш

 \bigcirc

Lois de comportement

Assemblage de tubes soumis à (collaboration avec EDF)

de la fatigue thermomécanique

Les grandes déformations avancées

Cette formation permet aux participants d'approfondir leurs connaissances sur la mécanique non linéaire des matériaux, en utilisant la méthode des éléments finis pour les grandes déformations, avec le logiciel Z-set et sa bibliothèque de matériaux Z-mat.

Ce cours présente les formulations couramment formation s'adresse aux ingénieurs souhaitant utilisées pour modéliser les lois de comportement réaliser des calculs structurels au-delà des petites sous grandes déformations. Il met en évidence déformations, en particulier pour les grandes les distinctions théoriques entre ces approches rotations et déformations. et leur application aux calculs structurels. Cette

NIVEAU

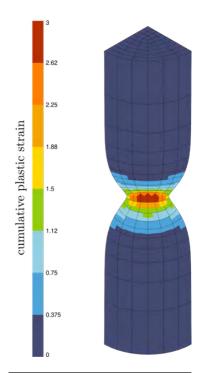
PRÉREQUIS

Connaissance des principes fondamentaux de la modélisation des milieux continus en petites déformations.

Compréhension des calculs tensoriels.

Familiarité avec la modélisation par éléments finis.

Connaissances de base en programmation scientifique.


OBJECTIFS

- Maîtriser les formulations pour les grandes déformations largement utilisées dans les codes éléments finis.
- Préparer les données pour les calculs de grandes déformations (choix de la formulation des éléments finis et de la loi de comportement).
- Comparer et interpréter les résultats obtenus avec différentes formulations de grandes
- Identifier une loi de comportement sous grandes déformations, en tenant compte des non-linéarités matérielles et géométriques.
- Mettre en œuvre une loi de comportement sous grandes déformations avec Z-set (intégration implicite/explicite de la loi de comportement, opérateur tangent cohérent).

FORMATION	DURÉE	PRIX HT	PARTICIPANTS
Intra-entreprise	2 jours	3200 €/formation	1 à 3 personnes

JOUR 1 > 08h30 - 12h00 et 13h30 - 17h00

Introduction	 Présentation de Transvalor Objectifs de la formation
Présentation de la bibliothèque de lois de comportement des matériaux Z- mat	 L'interface générique pour les lois de comportement Les éléments de base pour construire une loi de comportement (élasticité, critères de plasticité, lois d'écoulement,)
Élastoplasticité dans Z-set (gen_evp)	 Récapitulatif: petites déformations Extension aux grandes déformations: hypo-élastoplasticité Le concept de « modificateurs » dans Z-set Modèles hypoélastiques (loi de comportement, décomposition du taux de déformation,) Extension aux grandes déformations: hyper-élastoplasticité Modèles hyperélastiques, décomposition multiplicative Étude de cas: Plasticité anisotrope (cristalline,)
Formulations par éléments finis et opérateurs tangents	Lagrangien mis à jour / Lagrangien total Lagrangien_PK1
Intégration des lois de comportement	 Intégration explicite des lois de comportement Intégration implicite des lois de comportement
Interfaces avec les codes externes	- Abaqus - Ansys

 \triangleleft \square `Ш

 \geq

`Ш

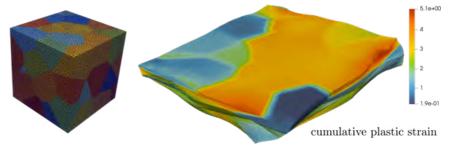
 \bigcirc

Ш

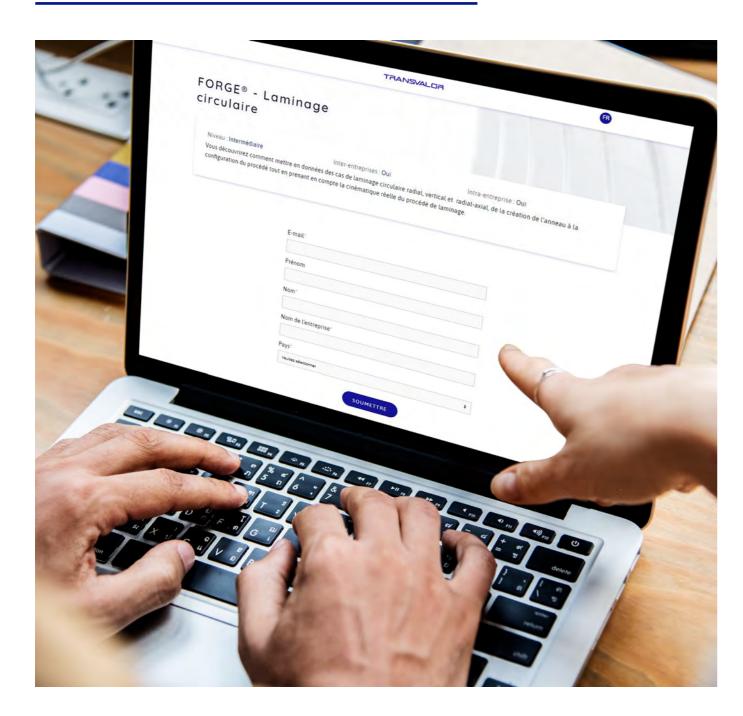
 \supset

Z


 \bigcirc


 \sum

Calcul du stress de traction sur un spécimen cylindrique et formation du


JOUR 2 > 08h30 - 12h00 et 13h30 - 17h00

Implémentation des lois de comporte- ment dans Z-set	 Environnement de compilation Linux / Windows, rappels et prérequis Introduction à Zebfront Implémentation d'une loi élastoplastique pour les petites déformations
Exercices	 Opérateurs nécessaires pour les calculs tensoriels Implémentation d'une loi hypoélastoplastique (pour les grandes déformations) Implémentation d'une loi hyperélastoplastique (pour les grandes déformations)
Conclusion	Questions et évaluation de la formation

INSCRIPTION ET RENSEIGNEMENTS

Pour vous inscrire directement à l'une de nos formations, rendez-vous sur notre site internet:

www.transvalor.com, rubrique: Nos services > Formations

Pour toute demande de renseignements sur nos formations ou obtenir un devis, contactez-nous à :

E-mail: sales@transvalor.com Tél.: +33 (0)4 92 92 42 00

HÉBERGEMENTS

Découvrez notre sélection d'hébergements proches de chez nous. Toute réservation se fait directement auprès de l'hébergement en mentionnant que vous réservez via Transvalor.

NÉMÉA APPART' HÔTEL

Appart' hôtel

Gamme de prix €

À 10 min à pied de Transvalor.

B&B SOPHIA ANTIPOLIS

Hôtel B&B 2 étoiles

Gamme de prix €

À 5 min en voiture.

MOXY SOPHIA ANTIPOLIS

Hôtel Groupe Marriott

Gamme de prix €€

À 2 min en voiture.

MERCURE ANTIBES SOPHIA ANTIPOLIS

Hôtel 4 étoiles

Gamme de prix €€

À 5 min en voiture.

BEACHCOMBER FRENCH RIVIERA

Hôtel 4 étoiles Resort et Spa

Gamme de prix €€€

À 5 min en voiture.

Z

CONDITIONS GÉNÉRALES

Les présentes Conditions Générales s'appliquent à toutes les formations réalisées par Transvalor. Transvalor est agréé Organisme de formation, enregistré auprès du Préfet de la Région d'Ile de France et du Département de Paris sous le numéro 11061363575.

DEFINITIONS

Formations intra-entreprises : formations organisées dans les locaux du client pour un ou plusieurs collaborateurs de la société.

Formations en ligne: formations organisées en visioconférence pour 1 à 3 participants.

DOCUMENTS CONTRACTUELS

Transvalor vous adressera deux exemplaires de la convention de formation (pour les sociétés françaises), tel que requis par la loi. Le client devra alors retourner dès que possible une copie signée du contrat à Transvalor, portant le cachet de l'entreprise. Une attestation de présence est envoyée au département de la formation à la fin de la formation.

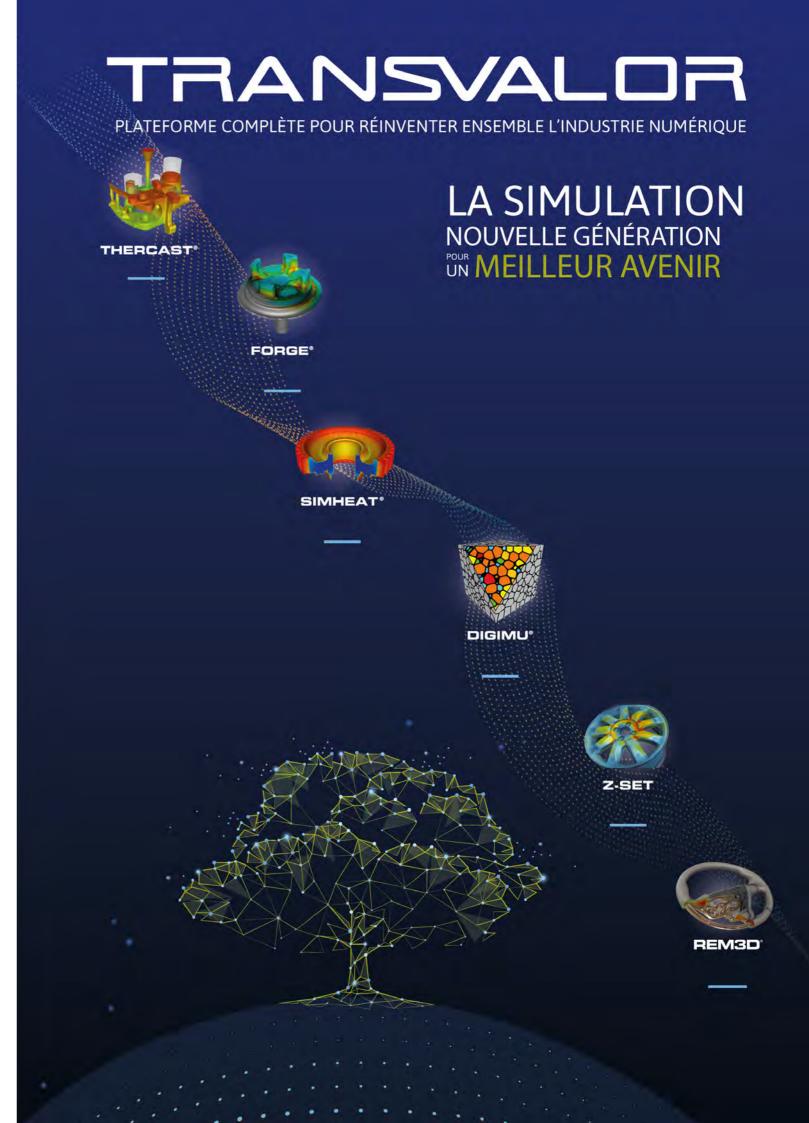
CONDITIONS D'ANNULATION

Du côté du client :

Les demandes d'annulation d'inscription doivent impérativement être adressées sous forme écrite à Transvalor S.A.

950 avenue Roumanille - CS 40237 Biot - 06904 Sophia Antipolis cedex - France, ou par e-mail à sales@transvalor.com. Toute demande d'annulation d'inscription non écrite est réputée nulle. Une annulation intervenant plus de quatre semaines avant le début de la formation ne donne lieu à aucun frais d'annulation. Dans le cas contraire, Transvalor facturera au Client une indemnité d'annulation égale à 100% du montant de la formation. Au cas où un employé ne pourrait pas assister à la formation, le Client a le droit de remplacer cet employé par un autre, d'un profil similaire.

PRIX


Pour les formations, les prix indiqués dans le catalogue des formations sont exprimés hors TVA, valables jusqu'au 31 décembre 2024.

CONDITIONS DE PAIEMENT

Une facture sera adressée au Client à l'adresse indiquée sur le bon de commande quatre semaines avant le début de la formation. La facture est payable trois semaines avant le début de la formation et sans escompte. Dans le cas d'un financement par l'intermédiaire d'un OPCA, il appartient au Client d'obtenir la prise en charge par l'organisme. Dans le cas où cette prise en charge n'est pas obtenue avant le début de la participation du Client à la formation considérée, le Client devra s'acquitter des sommes dues auprès de Transvalor et fera son affaire du remboursement auprès de l'OPCA.

TRIBUNAL COMPÉTENT

En cas de litige et en absence d'un règlement à l'amiable, la seule juridiction compétente est le Tribunal de Cannes.

TRANSVALOR S.A.

E-Golf Park 950 avenue Roumanille - Bâtiment Iroko CS 40237 Biot

06904 Sophia Antipolis cedex - France

Tél.: +33 0(4) 92 92 42 00

E-mail: marketing@transvalor.com

www.transvalor.com

Impression : Ideogram Design 120 Route des Macarons, 06560 Sophia-Antipolis, France. Imprimé en France, Janvier 2025.

UNE PLATEFORME COMPLÈTE POUR RÉINVENTER L'INDUSTRIE NUMÉRIQUE

